首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   1篇
  国内免费   7篇
地球物理   2篇
地质学   15篇
  2022年   1篇
  2020年   3篇
  2019年   2篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2012年   1篇
  2005年   1篇
  2004年   1篇
  2002年   2篇
  1987年   1篇
排序方式: 共有17条查询结果,搜索用时 31 毫秒
1.
南秦岭横丹浊积岩系是一套巨厚的浊流沉积,以向南或南东倾的单斜构造产出。由下而上,该沉积层序包括深水盆地、深水浊积扇和斜坡水道3个相序。相应地,沉积物粒度变粗,厚度变大,火山质组分含量增加,凝灰层大量发育,表明横丹浊积岩系为活动型浊积岩;其古水流方向为NNW—NNE向,物源区为南侧的碧口火山岩系。另外,横丹浊积岩系内还见石英岩、重结晶大理岩成分的砾石,说明其物源还包括被动陆缘环境的沉积物。相序、组构、沉积特征和物源区综合分析表明,横丹浊积岩系为弧前盆地充填物。构筑这一弧前盆地的动力学机制是洋壳板块向南俯冲于扬子板块被动陆缘之下,时代可能晚于中晚泥盆世。  相似文献   
2.
通过1∶5万区域地质调查和收集相关资料的综合研究,本文对雅鲁藏布江结合带的形成演化作了进一步的探讨。雅鲁藏布江特提斯洋具有弧后扩张洋盆的性质,在早三叠世至中三叠世中期洋盆初步形成,中三叠世晚期至晚三叠世洋盆全面形成,从早侏罗世至晚白垩世洋盆逐步萎缩,到古新世至始新世关闭。南带的蛇绿岩主要为洋中脊扩张型(MORB型),形成于中三叠世晚期至晚三叠世。北带的蛇绿岩主要为与洋内俯冲相关的俯冲带上盘型(SSZ型),形成于早中侏罗世。带内侏罗纪至白垩纪其他岩浆岩主要为前弧玄武岩类(FAB型)。显示雅鲁藏布江特提斯洋从早侏罗世开始发生了洋内俯冲,并同步向北向冈底斯带之下主动俯冲消减和向南向喜马拉雅地块之下被动俯冲消减,持续发展到晚白垩世,在古新世至始新世俯冲碰撞消亡转化为结合带。  相似文献   
3.
日喀则弧前盆地紧邻印度板块与欧亚大陆碰撞带,研究其剥蚀历史对理解印度板块与欧亚大陆碰撞对造山带剥蚀的影响具有重要意义。文中利用磷灰石裂变径迹(AFT)及锆石和磷灰石的(U-Th)/He(ZHe和AHe)年龄数据,结合已发表的低温热年代数据探讨日喀则弧前盆地的热演化和剥露历史。日喀则弧前盆地磷灰石裂变径迹年龄存在明显的南北差异,南部磷灰石裂变径迹年龄为74~44Ma,对应的剥蚀速率为0. 03~0. 1km/Ma,剥蚀量≤2km;北部磷灰石裂变径迹年龄为27~15Ma,剥蚀速率为0. 09~0. 29km/Ma,但缺失早新生代的热演化历史。而磷灰石的(U-Th)/He年龄表明15Ma BP之后日喀则弧前盆地整体呈现一致的剥露历史。低温热年代数据表明日喀则弧前盆地南部自新生代以来尽管受到印度板块与欧亚大陆碰撞及后期断层活动的影响,海拔由海平面抬升至4. 2km,但一直保持缓慢的剥蚀,表明高原隆升并未直接促使该地区的岩石剥蚀速率加快,这与快速剥蚀即代表造山带开始隆升的假设不相符。此外,日喀则弧前盆地北部的低温热年代学研究表明晚渐新世—早中新世Kailas盆地仅发育于日喀则弧前盆地与冈底斯造山带之间的狭长地带,并在短期内经历了快速的埋藏和剥露。  相似文献   
4.
The Himalia Ridge Formation (Fossil Bluff Group), AlexanderIsland is a 2·2-km-thick sequence of Upper Jurassic–LowerCretaceous conglomerates, sandstones and mudstones, derivedfrom an andesitic volcanic arc and deposited in a fore-arc basin.The metamorphic and thermal history of the formation has beendetermined using authigenic mineral assemblages and vitrinitereflectance measurements. Metamorphic effects include compaction,pore-space reduction, cementation and dissolution and replacementof detrital grains by clay minerals (smectite, illite/smectite,corrensite and kaolinite), calcite, chlorite, laumontite, prehnite,pumpellyite, albite and mica, with less common quartz, haematite,pyrite and epidote. The authigenic mineral assemblages exhibita depth-dependence, and laumontite and calcite exhibit a strongantipathetic relationship. Detrital organic matter in the argillaceouslayers has vitrinite reflectance values (Ro) ranging from 2·3to 3·7%. This indicates considerable thermal maturation,with a systematic increase in reflectivity with increasing depth.There is good correlation of metamorphic mineral assemblageswith chlorite crystallinity and vitrinite reflectance values—allindicating temperatures in the range of 140 ± 20°Cat the top of the sequence to 250 ± 10°C at the baseof the sequence. The temperatures suggest a geothermal gradientof 36–64°C/km and a most likely gradient of 50°C/km.It is suggested that this higher-than-average gradient for afore-arc basin resulted either from rifting during basin formationor from a late-stage arc migration event. KEY WORDS: Antarctica; diagenesis; fore-arc basin; low-temperature metamorphism; vitrinite reflectance  相似文献   
5.
蛇绿岩是造山带研究的关键问题之一, 文章在野外地质调查的基础上, 通过岩石学、同位素年代学、地球化学等综合研究, 认为东秦岭丹凤地区分水岭蛇绿岩是与俯冲带相关的SSZ型蛇绿岩。其中的变玄武岩是产于弧前构造环境的玻玄岩, 它具有较玻安岩稍低的SiO2含量, 同时具有高MgO(9.24%~18.74%)和Mg#(74~85)、低TiO2(0.15%~0.38%)和球粒陨石标准化稀土元素配分曲线呈“U”型及相容元素Ni、Cr丰度较高, 高场强元素(HFSE)Y、V、Zr、Yb丰度较低等地球化学特征。变辉长岩的LA-ICP-MS锆石U-Pb年龄表明分水岭蛇绿岩形成于(499.7±6.1) Ma, 玻玄岩的存在暗示着此时的古商丹洋强烈向北俯冲, 在洋内俯冲带和北秦岭南缘之间形成了与俯冲带相关的SSZ型蛇绿岩, 进一步补充完善了秦岭造山带的地质演化历史。  相似文献   
6.
The Neoproterozoic Allaqi-Heiani suture (800-700 Ma) in the south Eastern Desert of Egypt is the northernmost linear ophiolitic belt that defines an arc-arc suture in the Arabian- Nubian shield (ANS). The Neoproterozoic serpentinized peridotites represent a distinct lithology of dismembered ophiolites along the Allaqi-Heiani suture zone. The alteration of peridotites varies, some contain relicts of primary minerals (Cr-spinel and olivine) and others are extremely altered, especially along thrusts and shear zones, with development of talc, talc-carbonate and quartz-carbonate. The fresh cores of the chromian spinels are rimmed by ferritchromite and Cr- magnetite. The fresh chromian spinels have high Cr# (0.62 to 0.79), while Mg# shows wider variation (0.35-0.59). High Cr# in the relict chromian spinels and Fo content in the primary olivines indicate that they are residual peridotites after extensive partial melting. The studied ophiolitic upper mantle peridotites are highly depleted and most probably underwent high degrees of partial melting at a supra-subduction zone setting. They can be produced by up to -20%-22% dynamic melting of a primitive mantle source. The mineralogical and geochemical features of the studied rocks reflect that the mantle peridotites of the north part of the Wadi Allaqi district are similar to the fore-arc peridotites of a supra-subduction zone.  相似文献   
7.
ABSTRACT

The dismembered ophiolites in Wadi Arais area of the south Eastern Desert of Egypt are one of a series of Neoproterozoic ophiolites found within the Arabian–Nubian Shield (ANS). We present new major, trace, and rare earth element analyses and mineral composition data from samples of the Wadi Arais ophiolitic rocks with the goal of constraining their geotectonic setting. The suite includes serpentinized ultramafics (mantle section) and greenschist facies metagabbros (crustal section). The major and trace element characteristics of the metagabbro unit show a tholeiitic to calc-alkaline affinity. The serpentinized ultramafics display a bastite, or less commonly mesh, texture of serpentine minerals reflecting harzburgite and dunite protoliths, and unaltered relics of olivine, orthopyroxene, clinopyroxene, and chrome spinel can be found. Bulk-rock chemistry confirms harzburgite as the main protolith. The high Mg# (91.93–93.15) and low Al2O3/SiO2 ratios (0.01–0.02) of the serpentinized peridotite, together with the high Cr# (>0.6) of their Cr-spinels and the high NiO contents (0.39–0.49 wt.%) of their olivines, are consistent with residual mantle rocks that experienced high degrees of partial melt extraction. The high Cr# and low TiO2 contents (0.02–0.34 wt.%) of the Cr-spinels are most consistent with modern highly refractory fore-arc peridtotites and suggest that these rocks probably developed in a supra-subduction zone environment.  相似文献   
8.
The Zedang and Luobusa ophiolites are located in the eastern section of the Yalung Zangbo ophiolite belt,and they share similar geological tectonic setting and age.Thus,an understanding of their origins is very important for discussion of the evolution of the Eastern Tethys Ocean.There is no complete ophiolite assemblage in the Zedang ophiolite.The Zedang ophiolite is mainly composed of mantle peridotite and a suite of volcanic rocks as well as siliceous rocks,with some blocks of olivinepyroxenite.The mantle peridotite mainly consists of Cpx-harzburgite,harzburgite,some lherzolite,and some dunite.A suite of volcanic rocks is mainly composed of caic-aikaline pyroclastic rocks and secondly of tholeiitic pillow lavas,basaltic andesites,and some boninitic rocks with a lower TiO2 content (TiO2 < 0.6%).The pyroclastic rocks have a LREE-enriched REE pattern and a LILE-enriched (compared to HFSE) spider diagram,demonstrating an island-arc origin.The tholeiitic volcanic rock has a LREE-depleted REE pattern and a LILE-depleted (compared to HFSE) spider diagram,indicative of an origin from MORB.The boninitic rock was generated from fore-arc extension.The Luobusa ophiolite consists of mantle peridotite and mafic-ultramaflc cumulate units,without dike swarms and volcanic rocks.The mantle peridotite mainly consists of dunite,harzburgite with low-Opx (Opx < 25%),and harzburgite (Opx > 25%),which can be divided into two facies belts.The upper is a dunite-harzburgite (Opx < 25%) belt,containing many dunite lenses and a large-scale chromite deposit with high Cr203; the lower is a harzburgite (Opx >25%) belt with small amounts of dunite and lherzolite.The Luobusa mantle peridotite exhibits a distinctive vertical zonation of partial melting with high melting in the upper unit and low melting in the lower.Many mantle peridotites are highly depleted,with a characteristic U-shaped REE pattern peculiar to fore-arc peridotite.The Luobusa cumulates are composed of wehrlite and olivine-pyroxenite,of the P-P-G ophiolite series.This study indicates that the Luobusa ophiolite was formed in a fore-arc basin environment on the basis of the occurrence of highly depleted mantle peridotite,a high-Cr2O3 chromite deposit,and cumulates of the P-P-G ophiolite series.We conclude that the evolution of the Eastern Tethys Ocean involved three stages:the initial ocean stage (formation of MORB volcanic rock and dikes),the forearc extension stage (formation of high-Cr203 chromite deposits and P-P-G cumulates),and the islandarc stage (formation of caic-alkaline pyroclastic rocks).  相似文献   
9.
The Mariana subduction structure is a hot topic in ocean-ocean subduction zone research,and its subduction mechanism has attracted wide attention from experts and scholars in China and abroad.Based on the multi-channel seismic data of survey line MGL1204 in the Mariana fore-arc and DSDP ocean drilling data,this paper studies the development and evolution characteristics of the structure and strata in the Cenozoic Mariana fore-arc sedimentary basin.The Cenozoic strata are divided into six seismic sequences,with the possible era of each seismic sequence discerned,and the relationship between fault development and earthquakes analyzed.The episodic activity of the volcanic chain of the Mariana island arc is thought to control the tectonic and stratigraphic development pattern of the Cenozoic sedimentary basin in the fore-arc.Between 16°N-19°N and 146°E-151°E,the maximum thickness of the sedimentary center of the Cenozoic fore-arc sedimentary basin in Mariana is about 2360 m.Normal faults are developed in the area and some broke to the seabed,indicating that the Mariana island arc is still in the post-arc expansion stage.The application of multi-channel seismic sections in structural and stratigraphic evolution study is an important means to elucidating the Mariana subduction mechanism.  相似文献   
10.
ABSTRACT

The Bir Umq ophiolite is one of the most important ophiolitic successions in the Arabian Shield, and represents an excellent case for the study of the tectonomagmatic evolution of the earliest Precambrian events in the juvenile part of the Arabian-Nubian Shield (ANS). It is a dismembered ophiolite, which includes a serpentinized peridotite with small amounts of gabbro and mélange, and is overlain by the Sumayir formation. The mantle section of the Bir Umq ophiolite has been pervasively sheared and folded during its emplacement and is extensively serpentinized, carbonated and silicified, resulting in the common development of magnesite and listwaenite along the shear zones. Listwaenite occurs in the form of upstanding ridges due to its resistance to erosion. Antigorite is the main serpentine mineral, which, however, has low amounts of lizardite and chrysotile, indicating that the present serpentinites formed by prograde metamorphism. The ophiolitic rocks of Bir Umq have undergone regional metamorphism up to the greenschist to amphibolite facies. The presence of mesh and bastite textures indicates harzburgite and dunite protoliths. The serpentinized peridotite preserves rare relicts of primary minerals such as olivine, pyroxene and Cr-spinel. The serpentinized ultramafics of Bir Umq have high Mg# [molar Mg/(Mg+Fe2+); 0.90–0.93), low CaO, and Al2O3 contents similar to that of the environment of the suprasubduction zone. Additionally, they are characterized by the depletion of some compatible trace elements (e.g., Nb, Sr, Ta, Zr, Hf and REE), but show a wide variation in the Rb and Ba. Moreover, they are enriched in some elements that have affinities for Mg-rich minerals such as Ni, Cr, V, and Co. Fresh relics of olivine have high Fo (av. 0.91) and NiO (av. 0.42) contents, similar to those in the mantle olivine. The fresh Cr-spinel has high Cr# (0.68) and low TiO2 content (av. 0.11), similar to those in modern fore-arc peridotites. The composition of both orth- and clinopyroxenes confirms the fore-arc affinity of the studied ultramafics. The present study indicates that the protoliths of the serpentinized ultramafics of Bir Umq have high partial melt degrees, which is consistent with the characteristics of ultramafic rocks formed in a subarc environment (fore-arc) within a suprasubduction zone system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号