首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1625篇
  免费   354篇
  国内免费   770篇
测绘学   19篇
大气科学   227篇
地球物理   240篇
地质学   1781篇
海洋学   181篇
天文学   8篇
综合类   80篇
自然地理   213篇
  2024年   21篇
  2023年   38篇
  2022年   88篇
  2021年   96篇
  2020年   75篇
  2019年   115篇
  2018年   85篇
  2017年   99篇
  2016年   110篇
  2015年   94篇
  2014年   132篇
  2013年   178篇
  2012年   149篇
  2011年   119篇
  2010年   94篇
  2009年   112篇
  2008年   120篇
  2007年   113篇
  2006年   102篇
  2005年   84篇
  2004年   90篇
  2003年   80篇
  2002年   78篇
  2001年   82篇
  2000年   72篇
  1999年   68篇
  1998年   36篇
  1997年   46篇
  1996年   32篇
  1995年   34篇
  1994年   20篇
  1993年   25篇
  1992年   15篇
  1991年   12篇
  1990年   6篇
  1989年   12篇
  1988年   1篇
  1987年   4篇
  1986年   3篇
  1985年   4篇
  1984年   1篇
  1979年   3篇
  1954年   1篇
排序方式: 共有2749条查询结果,搜索用时 15 毫秒
1.
The 1990 edition of the National Building Code of Canada (Associate Committee of the National Building Code, National Research Council, Ottawa, 1990) makes a clear distinction between eastern and western Canada in terms of seismic acceleration and velocity zones. While it is well established that ground motions can be amplified significantly through loose clay deposits, no results are available that take into consideration the typical high frequency content of ground motions in eastern Canada. This paper develops ground amplification curves for clays having depths between 10 and 70 m excited by typical eastern Canadian ground motions scaled to two different values of peak horizontal accelerations. Simplified free-field spectral design curves, which could be used by structural designers, are proposed. The curves show that maximum spectral accelerations occur for structural periods between 0.2 and 0.5 s. In addition, soil depth does not appear to be an important parameter controlling the response of typical clay deposits in eastern Canada.  相似文献   
2.
Abstract Eclogites are distributed for more than 500 km along a major tectonic boundary between the Sino-Korean and Yangtze cratons in central and eastern China. These eclogites usually have high-P assemblages including omphacite + kyanite and/or coesite (or its pseudomorph), and form a high-P eclogite terrane. They occur as isolated lenses or blocks 10 cm to 300 m long in gneisses (Type I), serpentinized garnet peridotites (Type II) and marbles (Type III). Type I eclogites were formed by prograde metamorphism, and their primary metamorphic mineral assemblage consists mainly of garnet [pyrope (Prp) = 15–40 mol%], omphacite [jadeite (Jd) = 34–64 mol%], pargasitic amphibole, kyanite, phengitic muscovite, zoisite, an SiO2 phase, apatite, rutile and zircon. Type II eclogites characteristically contain no SiO2 phase, and are divided into prograde eclogites and mantle-derived eclogites. The prograde eclogites of Type II are petrographically similar to Type I eclogites. The mantle-derived eclogites have high MgO/(FeO + Fe2O3) and Cr2O3 compositions in bulk rock and minerals, and consist mainly of pyrope-rich garnet (Prp = 48–60 mol%), sodic augite (Jd = 10–27 mol%) and rutile. Type III eclogites have an unusual mineral assemblage of grossular-rich (Grs = 57 mol%) garnet + omphacite (Jd = 30–34 mol%) + pargasite + rutile. Pargasitic and taramitic amphiboles, calcic plagioclase (An68), epidote, zoisite, K-feldspar and paragonite occur as inclusions in garnet and omphacite in the prograde eclogites. This suggests that the prograde eclogites were formed by recrystallization of epidote amphibolite and/or amphibolite facies rocks with near-isothermal compression reflecting crustal thickening during continent–continent collision of late Proterozoic age. Equilibrium conditions of the prograde eclogites range from P > 26 kbar and T= 500–750°C in the western part to P > 28 kbar and T= 810–880°C in the eastern part of the high-P eclogite terrane. The prograde eclogites in the eastern part are considered to have been derived from a deeper position than those in the western part. Subsequent reactions, manifested by (1) narrow rims of sodic plagioclase or paragonite on kyanite and (2) symplectites between omphacite and quartz are interpreted as an effect of near-isothermal decompression during the retrograde stage. The conditions at which symplectites re-equilibrated tend to increase from west (P < 10 kbar and T < 580°C) to east (P > 9 kbar and T > 680°C). Equilibrium temperatures of Type II mantle-derived eclogites and Type III eclogite are 730–750°C and 680°C, respectively.  相似文献   
3.
A growing body of evidence implies that the concept of 'treeless tundra' in eastern and northern Europe fails to explain the rapidity of Lateglacial and postglacial tree population dynamics of the region, yet the knowledge of the geographic locations and shifting of tree populations is fragmentary. Pollen, stomata and plant macrofossil stratigraphies from Lake Kurjanovas in the poorly studied eastern Baltic region provide improved knowledge of ranges of north‐eastern European trees during the Lateglacial and subsequent plant population responses to the abrupt climatic changes of the Lateglacial/Holocene transition. The results prove the Lateglacial presence of tree populations (Betula, Pinus and Picea) in the eastern Baltic region. Particularly relevant is the stomatal and plant macrofossil evidence showing the local presence of reproductive Picea populations during the Younger Dryas stadial at 12 900–11 700 cal. a BP, occurring along with Dryas octopetala and arctic herbs, indicating semi‐open vegetation. The spread of PinusBetula forest at ca. 14 400 cal. a BP, the rise of Picea at ca. 12 800 cal. a BP and the re‐establishment of PinusBetula forest at ca. 11 700 cal. a BP within a span of centuries further suggest strikingly rapid, climate‐driven ecosystem changes rather than gradual plant succession on a newly deglaciated land. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
4.
In the Shackleton Range of East Antarctica, garnet-bearing ultramafic rocks occur as lenses in supracrustal high-grade gneisses. In the presence of olivine, garnet is an unmistakable indicator of eclogite facies metamorphic conditions. The eclogite facies assemblages are only present in ultramafic rocks, particularly in pyroxenites, whereas other lithologies – including metabasites – lack such assemblages. We conclude that under high-temperature conditions, pyroxenites preserve high-pressure assemblages better than isofacial metabasites, provided the pressure is high enough to stabilize garnet–olivine assemblages (i.e. ≥18–20 kbar). The Shackleton Range ultramafic rocks experienced a clockwise P–T path and peak conditions of 800–850 °C and 23–25 kbar. These conditions correspond to ∼70 km depth of burial and a metamorphic gradient of 11–12 °C km−1 that is typical of a convergent plate-margin setting. The age of metamorphism is defined by two garnet–whole-rock Sm–Nd isochrons that give ages of 525 ± 5 and 520 ± 14 Ma corresponding to the time of the Pan-African orogeny. These results are evidence of a Pan-African suture zone within the northern Shackleton Range. This suture marks the site of a palaeo-subduction zone that likely continues to the Herbert Mountains, where ophiolitic rocks of Neoproterozoic age testify to an ocean basin that was closed during Pan-African collision. The garnet-bearing ultramafic rocks in the Shackleton Range are the first known example of eclogite facies metamorphism in Antarctica that is related to the collision of East and West Gondwana and the first example of Pan-African eclogite facies ultramafic rocks worldwide. Eclogites in the Lanterman Range of the Transantarctic Mountains formed during subduction of the palaeo-Pacific beneath the East Antarctic craton.  相似文献   
5.
Abstract:  Recent research has indicated river basin outlets draining linear sections of large, uplifting mountain belts often show a regularity of spacing, transverse to the main structural trend. A morphometric analysis of part of the Ruahine Range, on the North Island was undertaken to test whether drainage regularity may exist in smaller, younger mountain ranges. The ratio, R , of the half-width of the mountain belt, W , and the outlet spacing, S , was used to characterize drainage networks on the eastern side of the range. The spacing ratio for the range of 1.31 is lower than R results from studies of larger mountain belts ( R  = 1.91–2.23). We suggest the cause of this lower ratio is related to eastward migration of the Ruahine drainage divide.  相似文献   
6.
7.
Clay fractions in the non-calcareous surface sediments from the eastern Pacific were analyzed for clay minerals, REE and 143Nd/144Nd. Montmorillonite/illite ratio (M/I ratio), total REE contents ((REE), LREE/HREE ratio and cerium anomaly (бCe) may effectively indicate the genesis of clay minerals. Clay fractions with M/I ratio >1, бCe (0.85, (REE (400 μg/g, LREE/HREE ratio (4, and REE patterns similar to those of pelagic sediments are terrigenous and autogenetic mixed clay fractions and contain more autogenetic montmorillonite. Clay fractions with M/I ratio <1, бCe=0.86 to 1.5, ΣREE=200 to 350 μg/g, LREE/HREE ratio (6 and REE distribution patterns similar to that of China loess are identified as terrigenous clay fraction. The 143Nd/144Nd ratios or (э)Nd values of clay fractions inherit the features of terrigenous sources of clay minerals. Clay fractions are divided into 4 types according to (э)Nd values. Terrigenous clay minerals of type I with the (э)Nd values of -8 to -6 originate mainly from North American fluvial deposits. Those of type II with the (э)Nd values of -9 to -7 are mainly from the East Asia and North American fluvial deposits. Those of type III with (э)Nd values of -6 to -3 could come from the central and eastern Pacific volcanic islands. Those of type IV with (э)Nd values of -13 to -12 may be from East Asia eolian. The terrigenous and autogenetic mixed clay fractions show patchy distributions, indicating that there are volcanic or hot-spot activities in the eastern Pacific plate, while the terrigenous clay fractions cover a large part of the study area, proving that the terrigenous clay minerals are dominant in the eastern Pacific.  相似文献   
8.
胶东地区与金矿成矿有关的花岗岩体中的流体包裹体研究   总被引:2,自引:0,他引:2  
与胶东金矿有密切关系的玲珑片麻状花岗岩、栾家河二长花岗岩、郭家岭花岗闪长岩、上庄二长花岗岩4种类型花岗岩中矿物包裹体的发育程度、类型、大小及其特点, 以及包裹体的显微测温结果, 反映出玲珑岩体是经历了高级区域变质作用形成的重熔型花岗岩, 郭家岭岩体是由高温、高粘度岩浆结晶成岩的。栾家河岩体是由一种富CO2的高温、高粘度的岩浆中结晶演化而来, 岩体的侵入深度也较浅。上庄岩体形成温度压力较低。   相似文献   
9.
巴颜喀拉山东段花岗岩锆石SHRIMP定年及其地球化学特征   总被引:11,自引:2,他引:11  
巴颜喀拉山东段花岗岩直接侵入到已发生褶皱的三叠纪地层中,并被侏罗系年宝组不整合覆盖,其锆石SHRIMP U-Pb年龄为218~197 Ma.岩石类型主要为花岗闪长岩、二长花岗岩和正长花岗岩,岩石具似斑状结构或斑状结构,富铝高钾,富黑云母,含石榴子石和电气石等富铝矿物及暗色微细粒闪长质包体的发育为特征,铝饱和指数A/CNK=1.00~1.22,属巴尔巴林划分的CPG型花岗岩类.形成于巴颜喀拉山造山带陆内碰撞造山阶段的晚期.  相似文献   
10.
浙东白垩纪北漳和梁弄花岗岩体及其暗色岩石包体研究   总被引:7,自引:0,他引:7  
浙东地区晚中生代花岗岩类在岩性上分为三类:花岗岩-二长花岗岩、钾长花岗岩和A型花岗岩。对后两类花岗岩已有较多研究,但对前一类,尤其是二长花岗岩的研究还较薄弱。选择浙东具代表性的北漳和梁弄二长花岗岩体及其所含暗色岩石包体,以及共生的石英闪长岩类,通过系统的岩石学与地球化学对比研究,提出浙东二长花岗岩属准铝质、高钾钙碱性Ⅰ型花岗岩类演化系列,暗色岩石包体是由花岗质岩浆在深部析离出的镁铁质微粒包体(MME),成分特征类似于石英闪长岩,说明三者具内在成因联系,均与俯冲作用关系密切。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号