首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   3篇
  国内免费   37篇
地球物理   5篇
地质学   114篇
  2022年   1篇
  2020年   4篇
  2019年   2篇
  2018年   3篇
  2017年   1篇
  2016年   3篇
  2015年   3篇
  2014年   4篇
  2013年   7篇
  2012年   7篇
  2011年   6篇
  2010年   2篇
  2009年   2篇
  2008年   6篇
  2007年   4篇
  2006年   4篇
  2005年   3篇
  2004年   6篇
  2003年   3篇
  2002年   7篇
  2001年   4篇
  2000年   1篇
  1999年   5篇
  1998年   4篇
  1997年   2篇
  1996年   3篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1984年   1篇
  1983年   2篇
排序方式: 共有119条查询结果,搜索用时 257 毫秒
1.
The Feiran–Solaf metamorphic belt consists of low-P high-T amphibolite facies, partly migmatized gneisses, schists, amphibolites and minor calc-silicate rocks of metasedimentary origin. There are also thick concordant synkinematic sheets of diorite, tonalite and granodiorite orthogneiss and foliated granite and pegmatite dykelets. The gneissosity (or schistosity) is referred to as S1, and is almost everywhere parallel to lithological layering, S0. This parallelism is not due to transposition. The gneissosity formed during an extensional tectonic event (termed D1), before folding of S0. S1 formed by coaxial pure shear flattening strain (Z normal to S0, i.e. vertical; with X and Y both extensional and lying in S1). This strain also produced chocolate tablet boudinage of some layers and S1-concordant sills and veins. S1 has a strong stretching lineation L1 with rodding characteristics. Within-plane plastic anisotropy (lower ductility along Y compared to along X) resulted in L1-parallel extensional ductile shears and melt filled cracks. Continued shortening of these veins, and back-rotation of foliations on the shears produced intrafolial F1 folds with hinges parallel to the stretching lineation. F1 fold asymmetry variations do not support previous models involving macroscopic F1 folds or syn-gneissosity compressional tectonics. The sedimentary protoliths of the Feiran–Solaf gneisses were probably deposited in a pre-800 Ma actively extending intracratonic rift characterizing an early stage of the break-up of Rodinia.  相似文献   
2.
The Wadi Hafafit Complex (WHC) is an arcuate belt of orthogneisses, migmatites and other high-grade metamorphic rocks, which marks the boundary between the Central Eastern and the South Eastern Deserts of Egypt. In the WHC, gneissic meta-gabbro outlines macroscopic fold interference patterns characterized by elliptical to irregular culminations cored by gneissic meta-tonalite to meta-trondhjemite. The five main culminations of the WHC have previously been labeled A (most northerly), B, C, D and E (most southerly). A detailed structural investigation of B, C, D and E reveals that these structures are a result of the interference of four macroscopic fold phases, the first three of which may represent a single deformation event. The first folding involved sheath-like fold nappes, which were transported to the N or NW, assisted by translation on gently dipping mylonite zones. The regional gneissosity and mineral extension lineations formed during this folding event. The fold nappes were deformed by mainly open upright small macroscopic and mesocopic folds with approximately NE-trending hinges. As a probable continuation of the latter folding, the sheaths were buckled into large macroscopic folds and monoclines with the same NE-trends. The fourth macroscopic folding resulted from shortening along the NE–SW direction, producing mainly NW–SE-trending upright gently plunging folds. Gravitative uplift is disputed as a component of the deformation history of the WHC. The peculiarities of the fold interference pattern result from the interesting behaviour of sheath folds during their refolding.  相似文献   
3.
Staurolite–cordierite assemblages are common in mica schists of the Aston and Hospitalet gneiss domes of the central Axial Zone, Pyrenees (France, Andorra). Within a 200 m wide zone, staurolite, cordierite and andalusite porphyroblasts contain inclusion trails that preserve the same stage of development of a crenulation cleavage, strongly suggesting that all three phases are contemporaneous. Their syntectonic growth occurred during a short period at the beginning of the formation of the dominant schistosity (S2) of the domes. Staurolite and cordierite touching each other further indicates an equilibrium relationship. Whole‐rock analyses show that some staurolite–cordierite schists are depleted in K2O compared to post‐Archean shales (PAAS) and amphibolite facies pelites. Analysis of the st‐crd paragenesis in K‐poor schists without muscovite using KFMASH and MnNCKFMASH petrogentic grids, pseudosections and AFM compatibility diagrams predicts stable conditions at pressures of ~3.5 kbar at 575 °C. For metapelites with intermediate XMg values (0.7 >  XMg >0.48) a ‘muscovite‐out window’ exists from 550–650 °C at 3.5 kbar in the KFMASH system. Conventional thermobarometry (GB‐GASP, AvT‐AvP) and petrogenetic grids show an isobaric P–T path to peak temperatures of ~650 °C, supported by the presence of sillimanite‐K‐feldspar gneiss and migmatites. LP‐HT metamorphism in the Aston dome is related to early Carboniferous (c. 339 Ma) granitic intrusions into the dome core. As metamorphism is directly linked with the formation of the main S2 schistosity, the temporal relations demonstrated in this study conflict with previous studies which constrained LP‐HT metamorphism and the development of flat‐lying schistosity to the late Carboniferous (315–305 Ma) – at least in the eastern Axial Zone.  相似文献   
4.
As the northern segment of the Jiao-Liao-Ji Belt (JLJB), the Palaeoproterozoic Liaoji Belt is a key region for deciphering the formation and evolution of the North China Craton (NCC). In this study, we present the geochronology, geochemical, and isotopic studies on the monzogranitic gneiss, which is one of the major lithotectonic elements of the Liaoji Belt. LA-ICP-MS zircon U–Pb dating reveals that the studied monzogranitic gneisses were formed in the period of 2213–2178 Ma. They are in tectonic contact with the Palaeoproterozoic volcano-sedimentary rocks in the field. The monzogranitic gneisses belong to the high-K calc-alkaline series, and are metaluminous to peraluminous. They have 10,000 Ga/Al ratios of 2.63–3.14 with an average of 2.90, and are thus classified as aluminous A-type granites. Their εNd(t) values vary from ?3.4 to +2.5, indicating heterogeneous source region. The monzogranitic gneisses are characterized by enrichment in LREE and LILE (e.g. Rb, Ba, Th, and K) and depletion in HREE and HFSE (such as Nb, Ta, and Ti), and are typical to magmatism in active continental margins formed in a subduction-related tectonic setting. Taking into account their A-type affinity and regional geological data, we suggest that the monzogranitic gneisses were most probably generated in a local extensional back-arc environment during subduction.  相似文献   
5.
Cordierite‐bearing anatectic rocks inform our understanding of low‐pressure anatectic processes in the continental crust. This article focuses on cordierite‐bearing lithologies occurring at the upper structural levels of the Higher Himalayan Crystallines (eastern Nepal Himalaya). Three cordierite‐bearing gneisses from different geological transects (from Mt Everest to Kangchenjunga) have been studied, in which cordierite is spectacularly well preserved. The three samples differ in terms of bulk composition likely reflecting different sedimentary protoliths, although they all consist of quartz, alkali feldspar, plagioclase, biotite, cordierite and sillimanite in different modal percentages. Analysis of the microstructures related to melt production and/or melt consumption allows the distinction to be made between peritectic and cotectic cordierite. The melt productivity of different prograde assemblages (from two‐mica metapelite/metagreywacke to biotite‐metapelite) has been investigated at low‐pressure conditions, evaluating the effects of muscovite v. biotite dehydration melting on both mineral assemblages and microstructures. The results of the thermodynamic modelling suggest that the mode and type of the micaceous minerals in the prograde assemblage is a very important parameter controlling the melt productivity at low‐pressure conditions, the two‐mica protoliths being significantly more fertile at any given temperature than biotite gneisses over the same temperature interval. Furthermore, the cordierite preservation is promoted by melt crystallization at a dry solidus and by exhumation along P‐T paths with a peculiar dP/dT slope of about 15–18 bar °C?1. Overall, our results provide a key for the interpretation of cordierite petrogenesis in migmatites from any low‐P regional anatectic terrane. The cordierite‐bearing migmatites may well represent the source rocks for the Miocene andalusite‐bearing leucogranites occurring at the upper structural levels of the Himalayan belt, and low‐P isobaric heating rather than decompression melting may be the triggering process of this peculiar peraluminous magmatism.  相似文献   
6.
新型环境矿物材料——堇青石质泡沫陶瓷的研制   总被引:5,自引:0,他引:5  
以聚氨脂泡沫塑料为前驱体,高岭土、铝土矿和滑石为原料,经配方和工艺设计,制备了以堇青石为主晶相的泡沫陶瓷,制成品密度为0.310-0.447g/cm^3,气孔率为81.7%-87.6%,孔径为0.2-0.5mm,平均抗压强度为0.98MPa。探讨了烧成温度对材料气孔率、抗压强度和吸水率等性能的影响。  相似文献   
7.
Rocks of the Snake Creek Anticline are mainly pelitic schists, psammitic schists and quartzites that were metamorphosed during multiple high‐T/low‐P events extending from D1 to D5, with the metamorphic peak occurring late to post‐D3. Albitites are widespread, but are concentrated in five areas. They are typically fine‐ to medium‐grained, and consist of albite, with or without combinations of quartz, biotite, staurolite, cordierite, garnet, andalusite, sillimanite, kyanite, gedrite and tourmaline. From the presence or absence of albite inclusions in porphyroblasts, the albitites are interpreted as forming early in the D3 event as a result of infiltration of external fluids. Psammitic schists and quartzites were preferentially altered, but pelitic schists were also albitized in localities where the alteration was more extreme, with the replacement of muscovite total and the replacement of quartz and biotite variable. Structural controls on albitization include fracturing and syn‐D3 shear zones in fold hinges. Biotite schists with abundant porphyroblasts (combinations of staurolite, garnet, andalusite and cordierite) occur adjacent to albitites, and it is argued that they formed by the addition of Fe and Mg sourced from the albitites. In several albitite‐rich areas, cordierite grew early in D3 and was partly or entirely replaced during or after D3 by combinations of biotite, andalusite, tourmaline, staurolite and sillimanite. A postulated P–T–d path involved an increase in pressure (with or without a decrease in temperature) subsequent to early D3 albitization, followed by an increase in temperature up to the metamorphic peak (late D3 to early D4. The metamorphism was contemporary in part with the emplacement of the Williams Batholith (c. 1550–1500 Ma), which probably supplied the Na‐rich fluids.  相似文献   
8.
The South Karakorum margin, east of the Himalayan syntaxis, consist of an E–W elongated zone of young (10–3 Ma) high‐grade metamorphic rocks (M2) and related migmatitic domes. This late tectono‐metamorphic event post‐dates the Palaeogene (55–37 Ma) phase of thickening of the belt featured by NW–SE structures and associated M1 amphibolite facies metamorphism (0.7 GPa, 700 °C). This M2 metamorphism is characterised by low‐pressure, high‐temperature conditions coeval with migmatite formation in response to a thermal increase of c. 150 °C compared to M1, culminating at a temperature of c. 770 °C and a pressure of 0.5–0.6 GPa. Rapid exhumation of migmatitic domes, at a rate of 5 mm yr?1, was accommodated by vertical extrusion, in the core of E–W crustal‐scale folds. These crustal‐scale folds formed in response to N–S syn‐collisional shortening and were enhanced by thermal weakening of the migmatised continental crust. M2 metamorphism is spatially and temporarily associated with granitoids showing a mantle affinity, firmly suggesting that this could be the advective heat source for the granite and syenite generation and the subsequent migmatisation of the mid‐crustal level. Such relationships between a mantle‐related magmatism and a high‐temperature metamorphism in a convergent shortening context are suggestive of the breakoff of the subducted Indian slab since 20 Ma.  相似文献   
9.
The reaction muscovite+cordierite→biotite+Al2SiO5 +quartz+H2O is of considerable importance in the low pressure metamorphism of pelitic rocks: (1) its operation is implied in the widespread assemblage Ms + Crd +And± Sil + Bt + Qtz, a common mineral assemblage in contact aureoles and low pressure regional terranes; (2) it is potentially an important equilibrium for pressure estimation in low pressure assemblages lacking garnet; and (3) it has been used to distinguish between clockwise and anticlockwise P–T paths in low pressure metamorphic settings. Experiments and thermodynamic databases provide conflicting constraints on the slope and position of the reaction, with most thermodynamic databases predicting a positive slope for the reaction. Evidence from mineral assemblages and microtextures from a large number of natural prograde sequences, in particular contact aureoles, is most consistent with a negative slope (andalusite and/or sillimanite occurs upgrade of, and may show evidence for replacement of, cordierite). Mineral compositional trends as a function of grade are variable but taken as a whole are more consistent with a negative slope than a positive slope. Thermodynamic modelling of reaction 1 and associated equilibria results in a low pressure metapelitic petrogenetic grid in the system K2O–FeO–MgO–Al2O3–SiO2–H2O (KFMASH) which satisfies most of the natural and experimental constraints. Contouring of the Fe–Mg divariant interval represented by reaction 1 allows for pressure estimation in garnet‐absent andalusite+cordierite‐bearing schists and hornfelses. The revised topology of reaction 1 allows for improved analysis of P–T paths from mineral assemblage sequences and microtextures in the same rocks.  相似文献   
10.
The Central Tianshan Tectonic Zone (CTTZ) is anarrow domain between an early Paleozoic southernTianshan passive continental margin and a late Paleo-zoic northern Tianshan arc zone, which is character-ized by the presence of numerous Precambrian meta-morphic basement blocks. Proterozoic granitoidgneisses and metamorphic sedimentary rocks,namely Xingxingxia and Kawabulag and Tianhugroups, are the most important lithological assem-blages in these metamorphic basement blocks, and alittle of …  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号