首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9310篇
  免费   2066篇
  国内免费   2493篇
测绘学   169篇
大气科学   235篇
地球物理   2640篇
地质学   7838篇
海洋学   1356篇
天文学   21篇
综合类   535篇
自然地理   1075篇
  2024年   68篇
  2023年   191篇
  2022年   313篇
  2021年   368篇
  2020年   422篇
  2019年   402篇
  2018年   381篇
  2017年   400篇
  2016年   456篇
  2015年   429篇
  2014年   530篇
  2013年   595篇
  2012年   569篇
  2011年   495篇
  2010年   456篇
  2009年   592篇
  2008年   596篇
  2007年   639篇
  2006年   574篇
  2005年   519篇
  2004年   552篇
  2003年   479篇
  2002年   433篇
  2001年   378篇
  2000年   399篇
  1999年   344篇
  1998年   324篇
  1997年   304篇
  1996年   294篇
  1995年   283篇
  1994年   213篇
  1993年   198篇
  1992年   156篇
  1991年   117篇
  1990年   95篇
  1989年   98篇
  1988年   62篇
  1987年   47篇
  1986年   31篇
  1985年   17篇
  1984年   14篇
  1983年   13篇
  1982年   4篇
  1981年   2篇
  1980年   3篇
  1979年   5篇
  1978年   2篇
  1954年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Beaver dam analogues (BDAs) are a cost-effective stream restoration approach that leverages the recognized environmental benefits of natural beaver dams on channel stability and local hydrology. Although natural beaver dams are known to exert considerable influence on the hydrologic conditions of a stream system by mediating geomorphic processes, nutrient cycling, and groundwater–surface water interactions, the impacts of beaver-derived restoration methods on groundwater–surface water exchange are poorly characterized. To address this deficit, we monitored hyporheic exchange fluxes and streambed porewater biogeochemistry across a sequence of BDAs installed along a central Wyoming stream during the summer of 2019. Streambed fluxes were quantified by heat tracing methods and vertical hydraulic gradients. Biogeochemical activity was evaluated using major ion porewater chemistry and principal component analysis. Vertical fluxes of approximately 1.0 m/day were observed around the BDAs, as was the development of spatially heterogeneous zones of nitrate production, groundwater upwelling, and anaerobic reduction. Strong contrasts in hyporheic zone processes were observed across BDAs of differing sizes. This suggests that structures may function with size-dependent behaviour, only altering groundwater–surface water interactions after a threshold hydraulic step height is exceeded. Patterns of hyporheic exchange and biogeochemical cycling around the studied BDAs resemble those around natural beaver dams, suggesting that BDAs may provide comparable benefits to channel complexity and near-stream function over a 1-year period.  相似文献   
2.
Two distinct age estimates for eclogite-facies metamorphism in the Sanbagawa belt have been proposed: (i) c.  120–110 Ma based on a zircon SHRIMP age for the Western Iratsu unit and (ii) c.  88–89 Ma based on a garnet–omphacite Lu–Hf isochron age from the Seba and Kotsu eclogite units. Despite the contrasting estimates of formation ages, petrological studies suggest the formation conditions of the Western Iratsu unit are indistinguishable from those of the other two units—all ∼20 kbar and 600–650 °C. Studies of the associated geological structures suggest the Seba and Western Iratsu units are parts of a larger semi-continuous eclogite unit. A combination of geochronological and petrological studies for the Western Iratsu eclogite offers a resolution to this discrepancy in age estimates. New Lu–Hf dating for the Western Iratsu eclogite yields an age of 115.9 ± 0.5 Ma that is compatible with the zircon SHRIMP age. However, petrological studies show that there was significant garnet growth in the Western Iratsu eclogite before eclogite facies metamorphism, and the early core growth is associated with a strong concentration of Lu. Pre-eclogite facies garnet (Grt1) includes epidote–amphibolite facies parageneses equilibrated at 550–650 °C and ∼10 kbar, and this is overgrown by prograde eclogite facies garnet (Grt2). The Lu–Hf age of c.  116 Ma is strongly skewed to the isotopic composition of Grt1 and is interpreted to reflect the age of the pre-eclogite phase. The considerable time gap ( c.  27 Myr) between the two Lu–Hf ages suggests they may be related to separate tectonic events or distinct phases in the evolution of the Sanbagawa subduction zone.  相似文献   
3.
4.
Summary. After thermal and alternating field (AF) cleaning, the characteristic high blocking temperature A component of natural remanent magnetization (NRM) of the Tudor gabbro of southern Ontario has a mean direction D = 326°, I =–46° ( k = 132, α95= 4.8°, N = 8 sites). The corresponding palaeopole, 133°E, 12°N ( dp = 4°, dm = 6°), confirms the palaeopole 137°E, 17°N (α95= 8.4°) reported earlier by Palmer & Carmichael, based on AF cleaning only. The A NRM has unblocking temperatures > 515–525°C which exceed the estimated 500°C peak temperature reached locally during ∼ 1050 Ma Grenvillian regional metamorphism. The A NRM therefore predates metamorphism and is probably a primary thermoremanence (TRM). The age of the Tudor NRM has previously been taken to be about 675 Ma, but recent 40Ar/39Ar dating by Baksi has shown that this is the time of post-metamorphic cooling to 200–250°C. Hornblendes record initial cooling of the intrusion to 590±20°C at 1110 Ma and this is the best estimate of the age of the A remanence. Successful Thellier-type palaeointensity determinations on 11 Tudor samples confirm that the A NRM is a TRM and indicate a palaeofield at this time of 18–27 μT, about 50–70 per cent of the present field intensity at 27° magnetic latitude. The anomalous Tudor A palaeopole, which lies well to the west of both 1000–800 Ma Grenvillian palaeopoles and 1100–1050 Ma poles from Interior Laurentia, is interpreted as recording divergence between Grenvillia and Interior Laurentia just before the Grenvillian orogeny, rather than a post-metamorphic extension of the apparent polar wander path as previously assumed.  相似文献   
5.
Geophysical data from Gerlache Strait, Croker Passage, Bismarck Strait and the adjacent continental shelf reveal streamlined subglacial bedforms that were produced at the bed of the Antarctic Peninsula Ice Sheet (APIS) during the last glaciation. The spatial arrangement and orientation of these bedforms record the former drainage pattern and flow dynamics of an APIS outlet up‐flow, and feeding into, a palaeo‐ice stream in the Western Bransfield Basin. Evidence suggests that together, they represent a single ice‐flow system that drained the APIS during the last glaciation. The ice‐sheet outlet flowed north/northeastwards through Gerlache Strait and Croker Passage and converged with a second, more easterly ice‐flow tributary on the middle shelf to form the main palaeo‐ice stream. The dominance of drumlins with low elongation ratios suggests that ice‐sheet outlet draining through Gerlache Strait was comparatively slower than the main palaeo‐ice stream in the Western Bransfield Basin, although the low elongation ratios may also partly reflect the lack of sediment. Progressive elongation of drumlins further down‐flow indicates that the ice sheet accelerated through Croker Passage and the western tributary trough, and fed into the main zone of streaming flow in the Western Bransfield Basin. Topography would have exerted a strong control on the development of the palaeo‐ice stream system but subglacial geology may also have been significant given the transition from crystalline bedrock to sedimentary strata on the inner–mid‐shelf. In the broader context, the APIS was drained by a number of major fast‐flowing outlets through cross‐shelf troughs to the outer continental shelf during the last glaciation. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
6.
White mica from the Liassic black shales and slates in Central Switzerland was analysed by transmission electron microscopy (TEM) and electron microprobe to determine its textural and compositional evolution during very low-grade prograde metamorphism. Samples were studied from the diagenetic zone, anchizone and epizone (T ≈100°–450 °C). Phyllosilicate minerals analysed include illite/smectite (I/S), phengite, muscovite, brammallite, paragonite, margarite and glauconite. Textural evolution primarily is towards larger, more defect-free grains with compositions that approach those of their respective end-members. The smectite-to-illite transformation reduced the amounts of the exchange components SiK?1Al?1, MgSiAl?2, and Fe3+Al?1. These trends continue to a lesser degree in the anchizone and epizone. Correlations between the proportion of smectite in I/S and the composition of I/S indicate that smectite layers may contain a high layer charge. Illite in I/S bears a compositional resemblance to macrocrystalline phengite in some samples, but is different in others. Paragonite first appears in the upper diagenetic zone or lower anchizone as an interlayer-deficient brammallite, and it may be mixed with muscovite on the nanometre scale. Owing to the small calculated structure factor for paragonite-muscovite superstructures, conventional X-ray powder diffraction cannot distinguish between mixed-layer structures and a homogeneous compositionally intermediate solid solutions. However, indirect TEM evidence shows that irregularly shaped domains of Na- and K-rich mica exist below 10 nm. Subsequent coarsening of domains at higher grades produced discrete paragonite grains at the margins of muscovite crystals or in laths parallel to the basal plane of the host muscovite. Margarite appears in the epizone and follows a textural evolution similar to paragonite in that mixtures of margarite, paragonite, and muscovite may initially occur on the nanometre scale. However, no evidence of interlayer-poor margarite has been found.  相似文献   
7.
Long-range sidescan sonar can be used to map sediment distributions over wide expanses of deep ocean floor. Seven acoustic facies that arise from differing sediment or rock types have been mapped over the low-relief Saharan continental rise and Madeira abyssal plain. These have been calibrated with sampling, profiling and camera studies and the facies can be traced confidently on a regional scale using the sidescan data. The mapping of the sediment distribution shows that a complex interplay of turbidity current and debris flow processes can occur at a continental rise/abysaal plain transition over 1000 km from the nearest continental slope.  相似文献   
8.
Abstract Eclogites are distributed for more than 500 km along a major tectonic boundary between the Sino-Korean and Yangtze cratons in central and eastern China. These eclogites usually have high-P assemblages including omphacite + kyanite and/or coesite (or its pseudomorph), and form a high-P eclogite terrane. They occur as isolated lenses or blocks 10 cm to 300 m long in gneisses (Type I), serpentinized garnet peridotites (Type II) and marbles (Type III). Type I eclogites were formed by prograde metamorphism, and their primary metamorphic mineral assemblage consists mainly of garnet [pyrope (Prp) = 15–40 mol%], omphacite [jadeite (Jd) = 34–64 mol%], pargasitic amphibole, kyanite, phengitic muscovite, zoisite, an SiO2 phase, apatite, rutile and zircon. Type II eclogites characteristically contain no SiO2 phase, and are divided into prograde eclogites and mantle-derived eclogites. The prograde eclogites of Type II are petrographically similar to Type I eclogites. The mantle-derived eclogites have high MgO/(FeO + Fe2O3) and Cr2O3 compositions in bulk rock and minerals, and consist mainly of pyrope-rich garnet (Prp = 48–60 mol%), sodic augite (Jd = 10–27 mol%) and rutile. Type III eclogites have an unusual mineral assemblage of grossular-rich (Grs = 57 mol%) garnet + omphacite (Jd = 30–34 mol%) + pargasite + rutile. Pargasitic and taramitic amphiboles, calcic plagioclase (An68), epidote, zoisite, K-feldspar and paragonite occur as inclusions in garnet and omphacite in the prograde eclogites. This suggests that the prograde eclogites were formed by recrystallization of epidote amphibolite and/or amphibolite facies rocks with near-isothermal compression reflecting crustal thickening during continent–continent collision of late Proterozoic age. Equilibrium conditions of the prograde eclogites range from P > 26 kbar and T= 500–750°C in the western part to P > 28 kbar and T= 810–880°C in the eastern part of the high-P eclogite terrane. The prograde eclogites in the eastern part are considered to have been derived from a deeper position than those in the western part. Subsequent reactions, manifested by (1) narrow rims of sodic plagioclase or paragonite on kyanite and (2) symplectites between omphacite and quartz are interpreted as an effect of near-isothermal decompression during the retrograde stage. The conditions at which symplectites re-equilibrated tend to increase from west (P < 10 kbar and T < 580°C) to east (P > 9 kbar and T > 680°C). Equilibrium temperatures of Type II mantle-derived eclogites and Type III eclogite are 730–750°C and 680°C, respectively.  相似文献   
9.
Puritjarra rock shelter provides a long record of late Quaternary vegetation in the Australian arid zone. Analysis of the sedimentary history of this rock shelter is combined with reanalysis of charcoal and phytolith records to provide a first‐order picture of changing landscapes in western Central Australia. These show a landscape responding to increasing aridity from 45 ka with deflation of clay‐rich red palaeosols (<45 ka) and sharp declines in grassland and other vegetation at 40–36 ka, and at the beginning of the Last Glacial Maximum (LGM) (24 ka). Vegetation in the catchment of the rock shelter recovered after 15 ka with expansion of both acacia woodland and spinifex grasslands, registering stronger summer rainfall in the interior of the continent. By 8.3 ka re‐vegetation of local palaeosols and dunes had choked off sediment supply to the rock shelter and the character of the sediments changed abruptly. Poaceae values peaked at 5.8 ka, suggesting the early–mid Holocene climatic optimum in Central Australia is bracketed between 8.3 and 5.8 ka. Local vegetation was disrupted in the late Holocene with a sharp decline in Poaceae at 3.8 ka, coinciding with an abrupt intensification of ENSO. Local grasslands recovered over the next two millennia and by 1.5 ka the modern vegetation appears to have become established. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
10.
Opening of the Fram Strait gateway: A review of plate tectonic constraints   总被引:1,自引:0,他引:1  
We have revised the regional crustal structure, oceanic age distribution, and conjugate margin segmentation in and around the Lena Trough, the oceanic part of the Fram Strait between the Norwegian–Greenland Sea and the Eurasia Basin (Arctic Ocean). The Lena Trough started to open after Eurasia–Greenland relative plate motions changed from right-lateral shear to oblique divergence at Chron 13 times (33.3 Ma; earliest Oligocene). A new Bouguer gravity map, supported by existing seismic data and aeromagnetic profiles, has been applied to interpret the continent–ocean transition and the influence of Eocene shear structures on the timing of breakup and initial seafloor spreading. Assuming that the onset of deep-water exchange depended on the formation of a narrow, oceanic corridor, the gateway formed during early Miocene times (20–15 Ma). However, if the initial Lena Trough was blocked by terrigenous sediments or was insufficiently subsided to allow for deep-water circulation, the gateway probably formed with the first well developed magnetic seafloor spreading anomaly around Chron 5 times (9.8 Ma; Late Miocene). Paleoceanographic changes at ODP Site 909 (northern Hovgård Ridge) are consistent with both hypotheses of gateway formation. We cannot rule out that a minor gateway formed across stretched continental crust prior to the onset of seafloor spreading in the Lena Trough. The gravity, seismic and magnetic observations question the prevailing hypotheses on the Yermak Plateau and the Morris Jesup Rise as Eocene oceanic plateaus and the Hovgård Ridge as a microcontinent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号