首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
地质学   5篇
海洋学   1篇
天文学   1篇
  2019年   1篇
  2013年   1篇
  2011年   1篇
  2009年   1篇
  2002年   1篇
  1996年   1篇
  1983年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
The Harry Creek Deformed Zone, a retrograde schist zone of epidote amphibolite facies grade, which separates the granulite facies Utralanama Block from the amphibolite facies Ankala Block in the southeastern Strangways Range, N.T., is typical of the retrograde schist zones transecting the Arunta Block. Associated with the deformed zone is a small deformed granitic pluton and its various offshoots—the Gumtree Granite Suite—which provides structural and geochrono‐logical evidence that the Harry Creek Deformed Zone has had a polyphase deforma‐tional history. Early movements within the deformed zone pre‐dated intrusion of the Gumtree Granite Suite and resulted in the movement of the Utralanama and Ankala Blocks into their present juxtaposition. Reactivation of much of the zone during the Alice Springs Orogeny brought about the schistose character of the zone and the deformation of the granitic rocks. Further minor reactivation of the zone, subsequent to the main phase of the Alice Springs Orogeny, resulted in limited development of pseudotachylytes.

The age of the granite (990 ± 13 m.y.) gives a minimum age for initiation of the zone, and evidence for the nature of the structures associated with the early movements is presented. It is suggested that the Harry Creek Deformed Zone represents a post‐orogenic wrench fault which has been reactivated. Early movements, which were of a brittle transcurrent nature, brought about major uplift (up to 10 km) to the north, and lateral movements may have been of the order of 60 km in a sinistral sense. Comparison with the Redbank Zone indicates many similarities, suggestive of a similar history.  相似文献   
2.
A sediment trap was deployed 3 m from the bottom at a water depth of 62 m on the southern flank of Georges Bank (41°02·2′N, 67°33·5′W) from 30 September 1978 to 10 March 1979 to qualitatively determine the size of sediments resuspended from the bottom by winter storms and to determine if seasonal changes in the phytoplankton could be observed in the trapped sediment.Bulk X-ray analyses of the trapped sediment showed layers of distinctly different textures preserved in the collection vessel. The median grain size of sampled layers ranged from 2·7 to 6·5 φ (fine sand to silt), but all layers contained a pronounced mode in the 3 φ (fine sand) range. Nine layers containing relatively large amounts of sand were present. The sand content was 75% in the coarest layers and about 32% in the fine layers. The median grain size of bottom sediments at the deployment site was considerably coarser than the trap samples, although the dominant grain size was also 3 φ.Average bottom-current speeds during the deployment period were about 30 cm s?1 with a range of 10 to 50 cm s?1. Bottom stress, computed from the observed currents and waves, suggest that 11 storms caused sufficient stress to resuspend 3 φ-sized sediments, in good agreement with the nine layers of relatively coarse sediments collected in the trap. Surface waves had to be included in the calculation of bottom stress because the bottom currents alone were insufficient to cause the resuspension of 3 φ-sized sediment.The trapped sediments contain numerous diatoms and coccoliths that are typical of late fall and winter assemblages. No clear seasonal difference in the flora was noted among sampled layers, probably due to the large influx of resuspended material and a reduced primary flux during this period. An undescribed species of Thalassiosira (G. Fryxell, personal communication), and siliceous scales of unknown systematic position were observed at all levels.  相似文献   
3.
The UK37′ index has proven to be a robust proxy to estimate past sea surface temperatures (SSTs) over a range of time scales, but like any other proxy, it has uncertainties. For instance, in reconstructions of the Last Glacial Maximum (LGM) in the northern North Atlantic, UK37′ indicates higher temperatures than those derived from foraminiferal proxies. Here we evaluate whether such warm glacial estimates are caused by the advection of reworked alkenones in ice‐rafted debris (IRD) to deep‐sea sediments. We have quantified both coccolith assemblages and alkenones in sediments from glaciogenic debris flows in the continental margins of the northern North Atlantic, and from a deep‐sea core from the Reykjanes Ridge. Certain debris flow deposits in the North Atlantic were generated by the presence of massive ice‐sheets in the past, and their associated ice streams. Such deposits are composed of the same materials that were present in the IRD at the time they were generated. We conclude that ice rafting from some locations was a transport pathway to the deep sea floor of reworked alkenones and pre‐Quaternary coccolith species during glacial stages, but that not all of the IRD contained alkenones, even when reworked coccoliths were present. We speculate that the ratio of reworked coccoliths to alkenone concentration might be useful to infer whether significant reworked alkenone inputs from IRD did occur at a particular site in the glacial North Atlantic. We also observe that alkenones in some of the debris flows contain a colder signal than estimated for LGM sediments in the northern North Atlantic. This is also clear in the deep‐sea core studied where the warmest intervals do not correspond to the intervals with large inputs of reworked coccoliths or IRD. We conclude that any possible bias to UK37′ estimates associated with reworked alkenones is not necessarily towards higher values, and that the high SST anomalies for the LGM are unlikely to be the result of a bias caused by IRD inputs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
4.
Five Quaternary interglacial periods are represented in core 57-7 from the Iceland Sea. Analysis of coccolith and planktonic foraminiferal assemblages from the interglacial periods (Oxygen Isotope Stages 1, 5, 7, 9 and 11) shows both similarities and differences in the assemblages. The differences indicate that the palaeoenvironment was not identical in the five interglacial periods. Oxygen Isotope Substage 5e reflects the warmest period, with the greatest inflow of warm Atlantic water. During this interval the Arctic Front apparently had a more westerly position than it has today. Substages 5a and 5c were periods when Arctic water masses dominated, as at the present day. In Oxygen Isotope Stages 7 and 9 inflow of Atlantic water was limited. Oxygen Isotope Stage 11 reflects a period of great productivity, but the region was still dominated by Arctic water masses. The position of the Arctic Front was possibly close to that of today, but not at the extreme western position it had in Oxygen Isotope Substage 5e.  相似文献   
5.
Coccoliths were studied from the ODP Hole 1002C and core PL07‐39PC in the Cariaco Basin. Increases in Emiliania huxleyi are synchronous with decreases of Gephyrocapsa oceanica and vice versa. A new index (GEX) based on the relative abundances of these two taxa is proposed, and correlates with various other proxies. It is shown that GEX can serve as upwelling proxy. This confirms that the Intertropical Convergence Zone shifted north during the Bølling/Allerød, south during the Younger Dryas and back north during the Preboreal. The upwelling proxy shows few discrepancies with the terrigenous record. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
6.
Five common placolith-bearing coccolithophorid algae—Gephyrocapsa oceanica, Coccolithus pelagicus, Calcidiscus leptoporus, Umbilicosphaera sibogae (var. sibogae and var. foliosa), and Emiliania huxleyi—were cultured to investigate controls on Sr partitioning in coccolith calcite. For identical temperature and media composition, Sr partitioning varies by more than 30% in exponential phase cultures of the five species and is linearly related to rates of calcite production/cell (ρ=0.91). Exponential phase culture experiments with three strains of C. leptoporus and six strains of G. oceanica at varying temperatures show variations in Sr partitioning of 20% and 30%, respectively. With C. leptoporus, Sr partitioning is equally correlated with temperature and calcification rate (ρ=0.8), which themselves are highly correlated; the slope of the relationship between DSr and calcification rate is comparable to that observed in all species at constant temperature. However, in G. oceanica, increased temperature appears to enhance Sr incorporation by up to 2% to 1.6% °C−1 in the range of 15 to 30 °C. The strong influence of calcification rate on Sr partitioning may be useful for inferring past variations in coccolithophorid productivity from Sr partitioning in coccolith sediments if the influence of temperature on Sr partitioning can be resolved. Because the relationship between calcite production and Sr partitioning is linear, a proportional change in calcification should be expressed much more strongly in the Sr/Ca ratio of large species with rapid calcite production than in smaller species, which produce calcite more slowly. Consequently, it may be possible to separate temperature and calcification influences on coccolith Sr/Ca by separately analyzing Sr/Ca in species that produce calcite rapidly and those that produce calcite slowly, if both undergo comparable relative changes in calcification rates.  相似文献   
7.
We present an array of new proxy data and review existing ones from core Fr1/94-GC3 from the East Tasman Plateau. This core is positioned at the southern extreme of the East Australia Current and simultaneously records changes in both oceanography and environments both in offshore and in southeastern Australia. Microfossils, including planktonic and benthic foraminifera, ostracods, coccoliths and radiolarians, were studied to interpret palaeo-oceanographic changes. Sea-surface temperature was estimated using planktonic foraminifera, alkenones and radiolaria. From the silicate sediment fraction, the mean grain size of quartz grains was measured to detect the changes in wind strength. An XRF scan of the entire core was used to determine the elemental composition to identify provenance of the sediment. We also compare these data with a pollen record from the same core provided in an accompanying article that provides the longest well-dated record of vegetation change in southeastern Australia. In an area of slow sedimentation, Fr1/94-GC3 provides a continuous record of change in southeastern Australia and the southern Tasman Sea over approximately the last 460?ka. We determine that the East Australian Current varied in intensity through time and did not reach the core site during glacial periods but was present east of Tasmania during all interglacial periods. The four glacial–interglacial periods recorded at the site vary distinctly in character, with Marine Isotope Stage (MIS) 9 being the warmest and MIS 5 the longest. Through time, glacial periods have progressively become warmer and shorter. Deposition of airborne dust at the core site is more substantial during interglacial periods than glacials and is believed to derive from mainland Australia and not Tasmania. It is likely that the source and direction of the dust plume varied significantly with the wind regimes between glacials and interglacials as mean effective precipitation changed.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号