首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5731篇
  免费   831篇
  国内免费   2245篇
测绘学   757篇
大气科学   51篇
地球物理   405篇
地质学   6443篇
海洋学   236篇
天文学   8篇
综合类   548篇
自然地理   359篇
  2024年   72篇
  2023年   133篇
  2022年   178篇
  2021年   249篇
  2020年   277篇
  2019年   293篇
  2018年   257篇
  2017年   256篇
  2016年   355篇
  2015年   310篇
  2014年   491篇
  2013年   379篇
  2012年   395篇
  2011年   403篇
  2010年   386篇
  2009年   416篇
  2008年   425篇
  2007年   416篇
  2006年   419篇
  2005年   305篇
  2004年   322篇
  2003年   243篇
  2002年   211篇
  2001年   252篇
  2000年   195篇
  1999年   228篇
  1998年   187篇
  1997年   155篇
  1996年   104篇
  1995年   88篇
  1994年   55篇
  1993年   69篇
  1992年   60篇
  1991年   26篇
  1990年   32篇
  1989年   32篇
  1988年   20篇
  1987年   21篇
  1986年   23篇
  1985年   26篇
  1984年   24篇
  1983年   5篇
  1982年   3篇
  1981年   2篇
  1978年   1篇
  1976年   3篇
  1975年   1篇
  1973年   2篇
  1972年   2篇
排序方式: 共有8807条查询结果,搜索用时 0 毫秒
1.
Kenai, located on the west coast of the Kenai Peninsula, Alaska, subsided during the great earthquake of AD 1964. Regional land subsidence is recorded within the estuarine stratigraphy as peat overlain by tidal silt and clay. Reconstructions using quantitative diatom transfer functions estimate co‐seismic subsidence (relative sea‐level rise) between 0.28±0.28 m and 0.70±0.28 m followed by rapid post‐seismic recovery. Stratigraphy records an earlier co‐seismic event as a second peat‐silt couplet, dated to ~1500–1400 cal. yr BP with 1.14±0.28 m subsidence. Two decimetre‐scale relative sea‐level rises are more likely the result of glacio‐isostatic responses to late Holocene and Little Ice Age glacier expansions rather than to co‐seismic subsidence during great earthquakes. Comparison with other sites around Cook Inlet, at Girdwood and Ocean View, helps in constructing regional patterns of land‐level change associated with three great earthquakes, AD 1964, ~950–850 cal. yr BP and ~1500–1400 cal. yr BP. Each earthquake has a different spatial pattern of co‐seismic subsidence which indicates that assessment of seismic hazard in southern Alaska requires an understanding of multiple great earthquakes, not only the most recent. All three earthquakes show a pre‐seismic phase of gradual land subsidence that marked the end of relative land uplift caused by inter‐seismic strain accumulation. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
2.
沿海地区城市发展及地面沉降的系统控制   总被引:9,自引:0,他引:9  
本文运用系统工程原理,系统论述了地下水合理开发、管理和地面沉降系统控制,这对沿海地区地面沉降控制起到重要的作用。  相似文献   
3.
基于非等间距模型的建筑物沉降预测方法研究   总被引:6,自引:0,他引:6  
吴清海 《测绘科学》2008,33(3):59-61
该文基于实测资料进行建筑物沉降预测。在灰色模型和泊松曲线模型理论的基础上,引入对非等间距数列进行变换处理的方法,从而建立了非等间距预测模型。结合建筑物沉降监测资料进行分析比较,结果表明,两种预测方法均能较好地反映建筑物的沉降趋势。  相似文献   
4.
文章介绍了全站仪交会法沉降监测,方便简洁地解决了测量人员不能进入的高速公路等特殊位置的测量问题,并通过对该方法的精度分析,论证了其可行性和有效性,对以后类似的测量工作提供经验和依据。  相似文献   
5.
张国建 《地下水》2008,30(3):20-23
开发地热资源是节约其它能源的一种方式,可以改变一个地区的投资环境,通过对山东滕州市煤系地层的区域地质情况进行勘察,并运用先进施工工艺及机械,开钻了鲁南地区第一眼煤系地层下的温泉井。并对之进行了经济效益分析。鲁南第一温泉井(滕温1号地热井)。  相似文献   
6.
鄂尔多斯盆地黄陵、东胜地区地温场对比   总被引:2,自引:0,他引:2  
鄂尔多斯盆地黄陵、东胜铀矿区分别处于盆地南部渭北隆起的北侧边缘和盆地北部伊盟隆起的东部,赋矿层位都是中侏罗统直罗组。盆地南、北铀矿区在现今地温场及古地温场都存在明显差异,南部现今大地热值及热演化程度明显高于北部。对于下侏罗统延安组和石炭—二叠系煤层,黄陵地区镜质体反射率都高于东胜地区。通过镜质体反射率资料得出同一埋深的一套地层经历的最大古地温和对应的古地温梯度也有南部高于北部的现象。由于早白垩世后期盆地普遍整体抬升使得现今地温相对古地温降低,南部黄陵地区抬升剥蚀量大于北部东胜地区,导致古、今地温差异也大于后者。盆地南部庆阳—富县一带局部构造热运动,导致南部异常地温场的形成,使得南部热演化程度高于北部。  相似文献   
7.
基于LongruanGIS3.0开发的电子地质报告系统包括数据库管理系统、图形处理系统和文字表格处理系统三部分。在介绍该系统的总体设计、功能实现和系统特点的基础上,总结了该软件的几方面优势:具有数据共享、数据集成、自动成图、功能开放的技术优势;具有开放的数据交换格式以及将CAD与GIS软件结合起来的强大图形编辑、查询、空间分析功能。  相似文献   
8.
依托“西部煤炭资源高精度三维地震勘探技术”工程,对晋城矿区进行了旨在提高小断层,小陷落柱探测能力的高密度三维地震勘探。根据面元选择因素及该区地质任务,采用5m×5m网格进行野外数据采集;考虑炮检距、方位角、覆盖次数、排列片横纵比及煤层埋深(350~500m)等因素,采用中点放炮、60道接收,24次覆盖(横向4次,纵向6次)的8线16炮束状观测系统,基岩中激发。原始资料经同一处理流程后,获得5m×5m×1ms、5m×10m×1ms、10m×10m×1ms及2.5m×2.5m×1ms不同单元的三维数据体多个,通过对比可以发现小断层,小陷落柱在其小面元叠加时间剖面、顺层切片及相干切片都有清晰的反映。实例说明,小面元采集技术可以提高对小构造的纵、横向分辨能力,满足山区对三维地震精确勘探的要求。  相似文献   
9.
矿井瓦斯危险程度与煤层中瓦斯赋存状况及其泄出方式有关,并取决于多种地质条件和采掘工艺。其中,煤特征条件特别重要。本文分析了湖南省的5种矿井瓦斯危险类型以及相应的煤特征条件,提出了“煤特征指数(I_c)”这一概念。I_c是一项评价矿井瓦斯危险程度的综合指标。研究表明,矿井瓦斯危险愈严重,则其I_c值愈高。应用该项成果预测了16对矿井的瓦斯危险类型,取得了满意的效果。  相似文献   
10.
Backstripping analysis and forward modeling of 162 stratigraphic columns and wells of the Eastern Cordillera (EC), Llanos, and Magdalena Valley shows the Mesozoic Colombian Basin is marked by five lithosphere stretching pulses. Three stretching events are suggested during the Triassic–Jurassic, but additional biostratigraphical data are needed to identify them precisely. The spatial distribution of lithosphere stretching values suggests that small, narrow (<150 km), asymmetric graben basins were located on opposite sides of the paleo-Magdalena–La Salina fault system, which probably was active as a master transtensional or strike-slip fault system. Paleomagnetic data suggesting a significant (at least 10°) northward translation of terranes west of the Bucaramanga fault during the Early Jurassic, and the similarity between the early Mesozoic stratigraphy and tectonic setting of the Payandé terrane with the Late Permian transtensional rift of the Eastern Cordillera of Peru and Bolivia indicate that the areas were adjacent in early Mesozoic times. New geochronological, petrological, stratigraphic, and structural research is necessary to test this hypothesis, including additional paleomagnetic investigations to determine the paleolatitudinal position of the Central Cordillera and adjacent tectonic terranes during the Triassic–Jurassic. Two stretching events are suggested for the Cretaceous: Berriasian–Hauterivian (144–127 Ma) and Aptian–Albian (121–102 Ma). During the Early Cretaceous, marine facies accumulated on an extensional basin system. Shallow-marine sedimentation ended at the end of the Cretaceous due to the accretion of oceanic terranes of the Western Cordillera. In Berriasian–Hauterivian subsidence curves, isopach maps and paleomagnetic data imply a (>180 km) wide, asymmetrical, transtensional half-rift basin existed, divided by the Santander Floresta horst or high. The location of small mafic intrusions coincides with areas of thin crust (crustal stretching factors >1.4) and maximum stretching of the subcrustal lithosphere. During the Aptian–early Albian, the basin extended toward the south in the Upper Magdalena Valley. Differences between crustal and subcrustal stretching values suggest some lowermost crustal decoupling between the crust and subcrustal lithosphere or that increased thermal thinning affected the mantle lithosphere. Late Cretaceous subsidence was mainly driven by lithospheric cooling, water loading, and horizontal compressional stresses generated by collision of oceanic terranes in western Colombia. Triassic transtensional basins were narrow and increased in width during the Triassic and Jurassic. Cretaceous transtensional basins were wider than Triassic–Jurassic basins. During the Mesozoic, the strike-slip component gradually decreased at the expense of the increase of the extensional component, as suggested by paleomagnetic data and lithosphere stretching values. During the Berriasian–Hauterivian, the eastern side of the extensional basin may have developed by reactivation of an older Paleozoic rift system associated with the Guaicáramo fault system. The western side probably developed through reactivation of an earlier normal fault system developed during Triassic–Jurassic transtension. Alternatively, the eastern and western margins of the graben may have developed along older strike-slip faults, which were the boundaries of the accretion of terranes west of the Guaicáramo fault during the Late Triassic and Jurassic. The increasing width of the graben system likely was the result of progressive tensional reactivation of preexisting upper crustal weakness zones. Lateral changes in Mesozoic sediment thickness suggest the reverse or thrust faults that now define the eastern and western borders of the EC were originally normal faults with a strike-slip component that inverted during the Cenozoic Andean orogeny. Thus, the Guaicáramo, La Salina, Bitúima, Magdalena, and Boyacá originally were transtensional faults. Their oblique orientation relative to the Mesozoic magmatic arc of the Central Cordillera may be the result of oblique slip extension during the Cretaceous or inherited from the pre-Mesozoic structural grains. However, not all Mesozoic transtensional faults were inverted.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号