首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  国内免费   2篇
地球物理   1篇
地质学   5篇
  2020年   1篇
  2013年   1篇
  2011年   1篇
  2008年   1篇
  2004年   1篇
  1999年   1篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
Early Miocene (ca.?21–18 Ma) volcanism in the Karacada? area comprises three groups of volcanic rocks: (1) calcalkaline suite (andesitic to rhyolitic lavas and their pyroclastics), (2) mildly-alkaline suite (alkali basalt, hawaiite, mugearite, benmoreite and trachydacite), and (3) a single trachyandesitic flow unit. Field observations, 40Ar/39Ar ages and geochemical data show that there was a progressive temporal transition from group 1 to 3 in a post-collisional tectonic setting. The calcalkaline suite rocks with medium-K in composition resemble those of subduction-related lavas, whereas the mildly-alkaline suite rocks having a sodic tendency (Na2O/K2O=1.5–3.2) resemble those of within-plate lavas. Incompatible element and Sr-Nd isotopic characteristics of the suites suggest that the lithospheric mantle beneath the Karacada? area was heterogeneously enriched by two processes before collision: (1) enrichment by subduction-related processes, which is important in the genesis of the calcalkaline volcanism, (2) enrichment by small degree melts from the astenosphere, which dominates the mildly alkaline volcanism. Perturbation of the enriched lithosphere by either delamination following collision and uplift or removal of the subducted slab following subduction and collision (i.e., slab breakoff) is the likely mechanism for the initiation of the post-collision volcanism.  相似文献   
2.
Composite dykes consisting of leucominette and dacite as wellas discrete dykes and flows of minette and lamproite composition,occur in the Veliki Majdan area, western Serbia. This area ispart of the Serbian Tertiary magmatic province, which consistsof numerous small occurrences of ultrapotassic igneous rocks.The composite dykes have leucominette margins (up to 150 cmthick) enclosing a central part of dacite up to 100 m in width.Between these two lithologies, a decimetre-sized transitionzone may occur. Petrography, mineral chemistry and bulk-rockgeochemistry, including Sr, Nd and Pb isotopes, provide evidencethat the minettes and leucominettes formed by hybridizationbetween a felsic magma similar in composition to dacite anda mantle-derived lamproitic magma. The leucominettes and minettescontain all phenocryst types (biotite, plagioclase, quartz)present in the dacites, but in partly resorbed and reacted form.The mica displays a great diversity of resorption textures asa result of partial dissolution, incipient melting and phlogopitization,suggesting superheating of the felsic melt during hybridization;the mineral modes and mineral compositions of the leucominettesand minettes resemble those in the lamproites. A model for themodification of lamproite melt towards minette is presentedin which minette is formed by mixing of lamproite and <30%felsic magma. The lack of any significant correlation betweenPb isotopic ratios and some of the ‘mixing-indices’(SiO2, Zr, Zr/Nb, 143Nd/144Ndi) recognized in the hybridizationmodel for the Veliki Majdan dykes may be a result of similarityof the Pb-isotopic signature in the two end-members. Highlyphlogopitized biotite xenocrysts in the minettes are ascribedto the retention of volatile components after magma mixing andcrystallization of a new generation of phlogopite from the hybridizedmagma. The magma-mixing model explains the reverse zoning andresorption features of phlogopite macrocrysts commonly recognizedin calcalkaline lamprophyres elsewhere. Therefore, this mixingmechanism may be globally applicable for the origin of minettesassociated with calcalkaline granitic plutonism in post-orogenicsettings. KEY WORDS: Serbia; lamproites; micas; phlogopitization; calcalkaline lamprophyres; superheating; magma mixing  相似文献   
3.
Hornblende‐bearing xenoliths in the I‐type Petford Granite, north‐east Queensland, show an abundance pattern suggesting redistribution in a convecting magma system and were probably carried up with the host magma. The Petford Granite and xenoliths are chemically cognate, but quartz monzodiorite‐granodiorite bodies (a potential source for the xenoliths) in the adjacent country rocks belong to an independent magma suite. The xenoliths are chemically similar to andesite lavas and dykes 90 km to the NW. They represent fragments of the parental andesite (diorite) of a calcalkaline suite, which fractionated to yield the Petford Granite. They are not source rocks for the granite melt, melt residua, or early cumulates. The fractionated granite melt broke through the earlier envelope of diorite and rose into the upper crust, carrying dioritic fragments with it. Interaction between magma and xenoliths was generally minimal.  相似文献   
4.
刘晓春  杨农  曲玮 《地球学报》1999,20(2):113-120
在750~1200℃、1.0~4.5GPa条件下对取自于大别山双河的长英质片麻岩进行了重结晶实验。在750℃时,随压力增加矿物生成顺序为:角闪石在1.75GPa时出现,2.5GPa时消失;黑云母在1.75GPa时通过水化反应生成多硅白云母;绿帘石可以稳定到>3.5GPa,在4GPa时转变成硬柱石;石榴石和绿辉石在1.5GPa时开始出现,而斜长石在1.75GPa时消失;石英在3GPa时转变为柯石英。这表明角闪岩相与榴辉岩相的转变发生在1.5~1.75GPa,并且,榴辉岩相可进一步划分出角闪榴辉岩相、柯石英榴辉岩相和硬柱石榴辉岩相等,它们分别指示不同的压力区间。多硅白云母是长英质岩石在高压-超高压条件下的主要共生矿物,其水化反应特性及结构水的保存致使陆壳在深俯冲过程中未发生明显的脱水作用,这是大别山碰撞带未能形成钙碱性岩浆弧的主要原因。  相似文献   
5.
Medicine Lake Volcano (MLV), located in the southern Cascades ∼ 55 km east-northeast of contemporaneous Mount Shasta, has been found by exploratory geothermal drilling to have a surprisingly silicic core mantled by mafic lavas. This unexpected result is very different from the long-held view derived from previous mapping of exposed geology that MLV is a dominantly basaltic shield volcano. Detailed mapping shows that < 6% of the ∼ 2000 km2 of mapped MLV lavas on this southern Cascade Range shield-shaped edifice are rhyolitic and dacitic, but drill holes on the edifice penetrated more than 30% silicic lava. Argon dating yields ages in the range ∼ 475 to 300 ka for early rhyolites. Dates on the stratigraphically lowest mafic lavas at MLV fall into this time frame as well, indicating that volcanism at MLV began about half a million years ago. Mafic compositions apparently did not dominate until ∼ 300 ka. Rhyolite eruptions were scarce post-300 ka until late Holocene time. However, a dacite episode at ∼ 200 to ∼ 180 ka included the volcano's only ash-flow tuff, which was erupted from within the summit caldera. At ∼ 100 ka, compositionally distinctive high-Na andesite and minor dacite built most of the present caldera rim. Eruption of these lavas was followed soon after by several large basalt flows, such that the combined area covered by eruptions between 100 ka and postglacial time amounts to nearly two-thirds of the volcano's area. Postglacial eruptive activity was strongly episodic and also covered a disproportionate amount of area. The volcano has erupted 9 times in the past 5200 years, one of the highest rates of late Holocene eruptive activity in the Cascades. Estimated volume of MLV is ∼ 600 km3, giving an overall effusion rate of ∼ 1.2 km3 per thousand years, although the rate for the past 100 kyr may be only half that. During much of the volcano's history, both dry HAOT (high-alumina olivine tholeiite) and hydrous calcalkaline basalts erupted together in close temporal and spatial proximity. Petrologic studies indicate that the HAOT magmas were derived by dry melting of spinel peridotite mantle near the crust mantle boundary. Subduction-derived H2O-rich fluids played an important role in the generation of calcalkaline magmas. Petrology, geochemistry and proximity indicate that MLV is part of the Cascades magmatic arc and not a Basin and Range volcano, although Basin and Range extension impinges on the volcano and strongly influences its eruptive style. MLV may be analogous to Mount Adams in southern Washington, but not, as sometimes proposed, to the older distributed back-arc Simcoe Mountains volcanic field.  相似文献   
6.
ABSTRACT

The Tafresh plutons that include Ahmadabab diorite, Vasfonjerd monzonite, Mehrezamin diorite and Chahak diorite, located to the east of Tafresh city, north-central Iran, are part of Urumieh-Dokhtar magmatic arc. U-Pb dating of zircon grains provides emplacement ages of 22.3 ± 1 Ma for the Ahmadabad diorite, and tightly clustered ages of 22.2 ± 0.2 Ma, 21.3 ± 0.2 Ma, and 21.7 ± 0.4 Ma for Vasfonjerd monzodiorite, Mehrezamin diorite-monzonite, and Chahak diorite-monzonite plutons, respectively. These rocks are metaluminous to weakly peraluminous, calc-alkaline, and characterized by enrichment in light rare earth elements, Nb-Ta negative anomalies, and high LILE/HFSE ratios. Tafresh plutonic rocks originated from a parental magma source and experienced different degrees of partial melting. Geochemical signatures of Tafresh plutonic rocks, such as a wide range of Y/Nb (2.7–8.4) and low Zr/Nb (19.5–35.) ratios, Nb/Ta (11.46–18.15), argue for mantle–crust interaction during generation of Tafresh magmas. Relatively low Nb/La ratios further indicate that the lithospheric mantle played a significant role in melt generation. HREE signatures (i.e. decrease Dy/Yb with increasing SiO2) preclude substantial involvement of garnet either in the residue, both during partial melting and fractionation of the magma. The plutons are a product of final stages of subduction-related magmatism prior to the collision between the Arabian and Eurasian tectonic plates.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号