首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   2篇
  国内免费   15篇
测绘学   1篇
大气科学   6篇
地球物理   2篇
地质学   23篇
海洋学   7篇
天文学   2篇
自然地理   10篇
  2023年   2篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   4篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2009年   2篇
  2008年   3篇
  2007年   1篇
  2006年   4篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   5篇
  2001年   4篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1995年   2篇
  1992年   1篇
  1987年   1篇
  1986年   2篇
排序方式: 共有51条查询结果,搜索用时 15 毫秒
1.
科学大洋钻探与深部生物圈   总被引:1,自引:0,他引:1  
从深海钻探计划(DSDP)在20世纪70年代最早提出海洋沉积物中细菌活动性的证据到90年代大洋钻探计划(ODP)获得了令人信服的海底深部生物的存在证据,并成为即将启动的综合大洋钻探计划(IODP)的一个优先研究领域,深部生物圈成为科学大洋钻探近年来最为重大的发现之一,同时它也将有效地促进地球科学和生物学等其他学科的交叉。  相似文献   
2.
新地球观   总被引:11,自引:0,他引:11  
One of the most important achivements on science in 20th century is the new recognition on the Earth:the Earth,out of the other planets, exhibits very peculiar features because it has an extremely complex and active periphery part (surfacial layers). This periphery part is an open system sustained by inputting solar energe , which is captured , transfered and stored by life. Through the system , cyclings of matters and energe flow are driven and regulated by life activities. This system is self-equilibrated,self-controlled and far away from astrophysical and thermodynamic equilibria mainly because of life and life activities.
Development of human calture influences increasingly on流Earth's periphery system , at last , the natural biosphere that has existed for 3 billion years on the Earth's surface will inavoidably be replaced by so called "noosphere",which is man一reconstructed,man-controlled and unstable system. Thus the fate of the Earth,to a great extent,will be determined by the direction of human calture evolution.
  相似文献   
3.
古—中生代之交的全球变化与生物效应   总被引:9,自引:0,他引:9  
古—中生代之交是显生宙以来最大的一次生物绝灭期 ,其形成机制一直是地学界长期探讨的热点课题之一。地史重大转折期是地球内、外各圈层长期作用下 ,各种量变达到阀值 ,加之可能的外因激化 ,在短时间内以连锁反应形式相继质变 ,形成了全球变化 (包括生物绝灭 )的地球突变期。文中从可能的外因 (外星体撞击事件 )及内因 (岩石圈的变化 ,地球表层的变化和生物圈的变化 )两个方面探讨了古—中生代之交的全球变化与生物效应  相似文献   
4.
Basin models can simulate geological, geochemical and geophysical processes and potentially also the deep biosphere, starting from a burial curve, assuming a thermal history and utilizing other experimentally obtained data. Here, we apply basin modelling techniques to model cell abundances within the deep coalbed biosphere off Shimokita Peninsula, Japan, drilled during Integrated Ocean Drilling Program Expedition 337. Two approaches were used to simulate the deep coalbed biosphere: (a) In the first approach, the deep biosphere was modelled using a material balance approach that treats the deep biosphere as a carbon reservoir, in which fluxes are governed by temperature-controlled metabolic processes that retain carbon via cell-growth and cell-repair and pass it back via cell-damaging reactions. (b) In the second approach, the deep biosphere was modelled as a microbial community with a temperature-controlled growth ratio and carrying capacity (a limit on the size of the deep biosphere) modulated by diagenetic-processes. In all cases, the biosphere in the coalbeds and adjacent habitat are best modelled as a carbon-limited community undergoing starvation because labile sedimentary organic matter is no longer present and petroleum generation is yet to occur. This state of starvation was represented by the conversion of organic carbon to authigenic carbonate and the formation of kerogen. The potential for the biosphere to be stimulated by the generation of carbon-dioxide from the coal during its transition from brown to sub-bituminous coal was evaluated and a net thickness of 20 m of lignite was found sufficient to support an order of magnitude greater number of cells within a low-total organic carbon (TOC) horizon. By comparison, the stimulation of microbial populations in a coalbed or high-TOC horizon would be harder to detect because the increase in population size would be proportionally very small.  相似文献   
5.
1901-1995年气候变化导致陆地生态系统净吸收碳   总被引:2,自引:0,他引:2  
The spatial and temporal variability of land carbon flux over the past one hundred years was investigated based on an empirical model directly calculating soil respiration rate. Our model shows that during 1901-1995, about 44-89 PgC (equals to 0.5, 0.9 PgC/yr respectively) were absorbed by terrestrial biosphere. The simulated net ecosystem productivity (NEP) after the 1930s was close to the estimated value of" missing C sink” from deconvolution analysis. Most of the total carbon sink happened during 1951-1985 with the estimated value of 33-50 PgC. Three major sinks were located in the tropics (10°S-10°N), Northern mid-latitudes (30°-60°N) and Southern subtropics (10°-40°S). During 1940s-mid-1970s, carbon sinks by terrestrial ecosystem increased with time, and decreased after the mid-1970s. These may be due to the ch anging of climate condition, as during the 1940s-1970s, temperature decreased and precipitation increased, while after the mid-1970s, an opposite climate situation occurred with evident increasing in temperature and decreasing in precipitation. Usually, warmer and dryer climate condition is not favor for carbon absorption by biosphere and even induces net carbon release from soil, while cooler and wetter condition may induce more carbon sink. Our model results show that the net carbon flux is particularly dependent on moisture / precipitation effect despite of temperature effect. The changing of climate in the past century may be a possible factor inducing increases in carbon sink in addition to CO2 and N fertilizer.  相似文献   
6.
Net primary productivity(NPP) is the most important index that represents the structure and function of the ecosystem.NPP can be simulated by dynamic global vegetation models(DGVM),which are designed to represent vegetation dynamics relative to environmental change.This study simulated the NPP of China's ecosystems based on the DGVM Integrated Biosphere Simulator(IBIS) with data on climate,soil,and topography.The applicability of IBIS in the NPP simulation of China's terrestrial ecosystems was verified first.Comparison with other relevant studies indicates that the range and mean value of simulations are generally within the limits of observations;the overall pattern and total annual NPP are close to the simulations conducted with other models.The simulations are also close to the NPP estimations based on remote sensing.Validation proved that IBIS can be utilized in the large-scale simulation of NPP in China's natural ecosystem.We then simulated NPP with climate change data from 1961 to 2005,when warming was particularly striking.The following are the results of the simulation.(1) Total NPP varied from 3.61 GtC/yr to 4.24 GtC/yr in the past 45 years and exhibited minimal significant linear increase or decrease.(2) Regional differences in the increase or decrease in NPP were large but exhibited an insignificant overall linear trend.NPP declined in most parts of eastern and central China,especially in the Loess Plateau.(3) Similar to the fluctuation law of annual NPP,seasonal NPP also displayed an insignificant increase or decrease;the trend line was within the general level.(4) The regional differences in seasonal NPP changes were large.NPP declined in spring,summer,and autumn in the Loess Plateau but increased in most parts of the Tibetan Plateau.  相似文献   
7.
In climate models, the land–atmosphere interactions are described numerically by land surface parameterization (LSP) schemes. The continuing improvement in realism in these schemes comes at the expense of the need to specify a large number of parameters that are either directly measured or estimated. Also, an emerging problem is whether the relationships used in LSPs are universal and globally applicable. One plausible approach to evaluate this is to first minimize uncertainty in model parameters by calibration. In this paper, we conduct a comprehensive analysis of some model diagnostics using a slightly modified version of the Simple Biosphere 3 model for a variety of biomes located mainly in the Amazon. First, the degree of influence of each individual parameter in simulating surface fluxes is identified. Next, we estimate parameters using a multi‐operator genetic algorithm applied in a multi‐objective context and evaluate simulations of energy and carbon fluxes against observations. Compared with the default parameter sets, these parameter estimates improve the partitioning of energy fluxes in forest and cropland sites and provide better simulations of daytime increases in assimilation of net carbon during the dry season at forest sites. Finally, a detailed assessment of the parameter estimation problem was performed by accounting for the decomposition of the mean squared error to the total model uncertainty. Analysis of the total prediction uncertainty reveals that the parameter adjustments significantly improve reproduction of the mean and variability of the flux time series at all sites and generally remove seasonality of the errors but do not improve dynamical properties. Our results demonstrate that error decomposition provides a meaningful and intuitive way to understand differences in model performance. To make further advancements in the knowledge of these models, we encourage the LSP community to adopt similar approaches in the future. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
8.
浅谈固体地球科学与地球系统科学   总被引:5,自引:0,他引:5  
地球科学在20世纪的诸多进展中,对后来科学发展具有深远影响的基本认识之一是地球演化的行为具有整体性,其不同的圈层确实通过多种途径相互作用,且人类活动已成为地球演化的重要营力之一。这些认识导致地球系统科学思想的产生和发展,并使不同圈层相互作用的过程和机理、人与环境的相互作用研究成为21世纪基础科学研究的前沿。地球系统科学强调地球不同圈层、不同单元相互作用的整体性和关联性,因而科学研究必须从"整体地球系统"的视野出发,但研究过程又必须从关键区域入手。我国是地球系统科学研究的关键地区之一,未来研究应立足地域优势和特色,攻克全球性重大科学问题,解决社会对地球科学的知识需求。  相似文献   
9.
Our goal was to evaluate effects of broad-scale changes in vegetation from grasslands to shrublands over the past 150 years on near-surface atmosphere over the Jornada Experimental Range in the northern Chihuahuan Desert, using a regional climate model. Simulations were conducted using 1858 and 1998 vegetation maps, and data collected in the field. Overall, the vegetation shift led to small changes in sensible heat (SH) and an increase in latent heat (LH). The impacts of shrub encroachment depended on shrubland type: conversion from grass to mesquite cools the near-surface atmosphere and from grass to creosotebush warms it. Higher albedo of mesquite relative to grasses reduced available energy, which was dissipated mainly as LH due to the deeper root system in mesquite. In creosotebush-dominated areas, a decrease in albedo, an increase in roughness length and displacement height contributed to the SH increase and warmer temperatures. Sensitivity simulations showed that an increase in soil moisture content enhanced shrub LH and a reduction in mesquite cover enhanced the temperature differences. The observed shift in vegetation led to complex interactions between land and surface fluxes, demonstrating that vegetation itself is a weather and climate variable as it significantly influences temperature and humidity.  相似文献   
10.
The southern Yucatán (SY) has been recognized as a hotspot of biodiversity with great risk of deforestation. Land change analysis, based on classified Landsat TM and ETM?+?satellite imagery (1990, 2000 and 2006), was used to estimate the annual deforestation rates of 141 land management units of the SY, and spatial patterns of forest fragmentation around and within the Calakmul Biosphere Reserve (CBR), which comprises approximately one-third of the region. Results indicate a decrease in annual deforestation rates over 1990–2006, from 0.15% year?1 to 0.06% year?1, but with significant sub-regional variations in the quantity and rate of forest loss. Despite a decline in deforestation during this period, there was considerable fragmentation both inside and outside the CBR. While population pressures and the expansion of pasture have caused deforestation across the region, agricultural intensification, diversified income strategies and reserve conservation may have contributed to reduced forest loss during the study period.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号