首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
地球物理   1篇
地质学   18篇
海洋学   1篇
自然地理   1篇
  2019年   1篇
  2016年   1篇
  2014年   3篇
  2010年   1篇
  2009年   5篇
  2008年   1篇
  2007年   2篇
  2006年   6篇
  2001年   1篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
1.
The utility of paleomagnetic data gleaned from the Bhander and Rewa Groups of the “Purana-aged” Vindhyanchal Basin has been hampered by the poor age control associated with these units. Ages assigned to the Upper Vindhyan sequence range from Cambrian to the Mesoproterozoic and are derived from a variety of sources, including 87Sr/86Sr and δ 13C correlations with the global curves and Ediacara-like fossil finds in the Lakheri–Bhander limestone. New analyses of the available paleomagnetic data collected from this study and previous work on the 1073 Ma Majhgawan kimberlite, as well as detrital zircon geochronology of the Upper Bhander sandstone and sandstones from the Marwar SuperGroup suggest that the Upper Vindhyan sequence may be up to 500 Ma older than is commonly thought. Paleomagnetic analysis generated from the Bhander and Rewa Groups yields a paleomagnetic pole at 44°N, 214.0°E (A95 = 4.3°). This paleomagnetic pole closely resembles the VGP from the well-dated Majhgawan intrusion (36.8°N, 212.5°E, α95 = 15.3°).Detrital zircon analysis of the Upper Bhander sandstone identifies a youngest age population at 1020 Ma. A comparison between the previously correlated Upper Bhander sandstone and the Marwar sandstone detrital suites shows virtually no similarities in the youngest detrital suite sampled. The main 840–920 Ma peak is absent in the Upper Bhander. This supports our assertion that the Upper Bhander is older than the 750–771 Ma Malani sequence, and is likely close to the age of the 1073 Ma Majhgawan kimberlite on the basis of the paleomagnetic similarities. By setting the age of the Upper Vindhyan at 1000–1070 Ma, several intriguing possibilities arise. The Bhander–Rewa paleomagnetic pole allows for a reconstruction of India at 1000–1070 Ma that overlaps with the 1073 ± 13.7 Majhgawan kimberlite VGP. Comparisons between the composite Upper Vindhyan pole (43.9°N, 210.2°E, α95 = 12.2°) and the Australian 1071 ± 8 Ma Bangamall Basin sills and the 1070 Ma Alcurra dykes suggest that Australia and India were not adjacent at this time period.  相似文献   
2.
This paper presents results of high-resolution deep seismic reflection profiling of the Proterozoic Vindhyan basin of the Rajasthan area along the Chandli-Bundi-Kota-Kunjer profile. Seismic images have been used to estimate the thickness of Vindhyan strata as well as to understand the tectonic framework of the basin. The results are constrained by gravity, magnetic and magnetotelluric data. The study reveals gentle SE-dipping reflection bands representing the Vindhyan strata. The seismic sections depict gradual thickening of the Vindhyan succession towards southeast from Bundi. The velocities of the upper and lower Vindhyans are identified as 4.6-4.8 km/s and 5.1-5.3 km/s. The NW limit of the Vindhyan basin is demarcated by the Great Boundary Fault (GBF) that manifests as a 30 km wide NW dipping thrust fault extending to a depth of 30 km.  相似文献   
3.
Amongst all the perceptible igneous manifestations (volcanic tuffs and agglomerates, minor rhyolitic flows and andesites, dolerite dykes and sills near the basin margins, etc.) in the Vindhyan basin, the two Mesoproterozoic diamondiferous ultramafic pipes intruding the Kaimur Group of sediments at Majhgawan and Hinota in the Panna area are not only the most conspicuous but also well-known and have relatively deeper mantle origin. Hence, these pipes constitute the only yet available ‘direct’ mantle samples from this region and their petrology, geochemistry and isotope systematics are of profound significance in understanding the nature of the sub-continental lithospheric mantle beneath the Vindhyan basin. Their emplacement age (∼ 1100 Ma) also constitutes the only reliable minimum age constrain on the Lower Vindhyan Group of rocks. The Majhgawan and Hinota pipes share the petrological, geochemical and isotope characteristics of kimberlite, orangeite (Group II kimberlite) and lamproite and hence are recognised as belonging to a ‘transitional kimberlite-orangeite-lamproite’ rock type. The namemajhagwanite has been proposed by this author to distinguish them from other primary diamond source rocks. The parent magma of the Majhgawan and Hinota pipes is envisaged to have been derived by very small (<1%) degrees of partial melting of a phlogopite-garnet lherzolite source (rich in titanium and barium) that has been previously subjected to an episode of initial depletion (extensive melting during continent formation) and subsequent metasomatism (enrichment). There is absence of any subduction-related characteristics, such as large negative anomalies at Ta and Nb, and therefore, the source enrichment (metasomatism) of both these pipes is attributed to the volatile- and K-rich, extremely low-viscosity melts that leak continuously to semi-continuously from the asthenosphere and accumulate in the overlying lithosphere. Lithospheric/crustal extension, rather than decompression melting induced by a mantle plume, is favoured as the cause of melting of the source regions of Majhgawan and Hinota pipes. This paper is a review of the critical evaluation of the published work on these pipes based on contemporary knowledge derived from similar occurrences elsewhere.  相似文献   
4.
The Upper Kaimur Group of the Vindhyan Supergroup in Central India, primarily consists of three rock types-DhandraulSandstone, Scarp Sandstone and Bijaigarh Shale. Mineralogically and geochemically, they are quartz arenite, sublitharenite to litharenite and litharenite to shale in composition, respectively. The A-CN-K ternary plot and CIA and ICV values suggest that the similar source rocks suffered severe chemical weathering, under a hot-humid climate in an acidic environment with higher P CO 2, which facilitated high sediment influx in the absence of land plants. Various geochemical discriminants, elemental ratios like K2O/Na2O, Al2O3/TiO2, SiO2/MgO, La/Sc, Th/Sc, Th/Cr, GdN/YbN and pronounced negative Eu anomalies indicate the rocks to be of post-Archean Proterozoic granitic source, with a minor contribution of granodioritic input, in a passive margin setting. The sediments of the Upper Kaimur Group were probably deposited in the interglacial period in between the Paleoproterozoic and Neoproterozoic glacial epochs.  相似文献   
5.
The organic geochemical methods of hydrocarbon prospecting involve the characterization of sedimentary organic matter in terms of its abundance, source and thermal maturity, which are essential prerequisites for a hydrocarbon source rock. In the present study, evaluation of organic matter in the outcrop shale samples from the Semri and Kaimur Groups of Vindhyan basin was carried out using Rock Eval pyrolysis. Also, the adsorbed low molecular weight hydrocarbons, methane, ethane, propane and butane, were investigated in the near surface soils to infer the generation of hydrocarbons in the Vindhyan basin. The Total Organic Carbon (TOC) content in shales ranges between 0.04% and 1.43%. The S1 (thermally liberated free hydrocarbons) values range between 0.01–0.09 mgHC/gRock (milligram hydrocarbon per gram of rock sample), whereas the S2 (hydrocarbons from cracking of kerogen) show the values between 0.01 and 0.14 mgHC/gRock. Based on the Tmax (temperature at highest yield of S2) and the hydrogen index (HI) correlations, the organic matter is characterized by Type III kerogen. The adsorbed soil gas, CH4 (C1), C2H6 (C2), C3H8 (C3) and nC4H10, (nC4), concentrations measured in the soil samples from the eastern part of Vindhyan basin (Son Valley) vary from 0 to 186 ppb, 0 to 4 ppb, 0 to 5 ppb, and 0 to 1 ppb, respectively. The stable carbon isotope values for the desorbed methane (δ13C1) and ethane (δ13C2) range between −45.7‰ to −25.2‰ and −35.3‰ to −20.19‰ (VPDB), respectively suggesting a thermogenic source for these hydrocarbons. High concentrations of thermogenic hydrocarbons are characteristic of areas around Sagar, Narsinghpur, Katni and Satna in the Son Valley. The light hydrocarbon concentrations (C1–C4) in near surface soils of the western Vindhyan basin around Chambal Valley have been reported to vary between 1–2547 ppb, 1–558 ppb, 1–181 ppb, 1–37 ppb and 1–32 ppb, respectively with high concentrations around Baran-Jhalawar-Bhanpur-Garot regions (Kumar et al., 2006). The light gaseous hydrocarbon anomalies are coincident with the wrench faults (Kota – Dholpur, Ratlam – Shivpuri, Kannod – Damoh, Son Banspur – Rewa wrench) in the Vindhyan basin, which may provide conducive pathways for the migration of the hydrocarbons towards the near surface soils.  相似文献   
6.
Variations of carbon and oxygen isotopic ratios in response to cyclical sea level fluctuations have been documented from a Paleoproterozoic peritidal stromatolite succession. The upper division of the Kajrahat Limestone, Vindhyan Supergroup of central India consists of several shallowing upward stromatolite cycles identified by regular and systematic changes in stromatolite size. Normally, larger stromatolites are followed upward in the succession by smaller stromatolites and microbial laminites that occupy the top of the cycle. Desiccation cracks are found in all the facies indicating subaerial exposure. We investigated the stable isotope compositional variations across nine complete stromatolite cycles showing frequent subaerial emergence. Carbon and oxygen isotopic values of the limestones, in general, are comparable to contemporary marine values available from earlier studies but show regular depletion in response to shallowing of the water level. The δ13C and δ18O values of the limestones vary within an individual stromatolite cycle; depleted values characterize the topmost part of the cycles. The isotope pattern is explained by micritic carbonate deposition in different sub environments of the shallow marine domain having different salinity and variable duration of exposure. These variations also probably caused the observed scatter in δ13C and δ18O values of supratidal microbial laminites.  相似文献   
7.
In this study, biometric and structural engineering tool have been used to examine a possible relationship within ChuariaTawuia complex and micro-FTIR (Fourier Transform Infrared Spectroscopy) analyses to understand the biological affinity of Chuaria circularis Walcott, collected from the Mesoproterozoic Suket Shales of the Vindhyan Supergroup and the Neoproterozoic Halkal Shales of the Bhima Group of peninsular India. Biometric analyses of well preserved carbonized specimens show wide variation in morphology and uni-modal distribution. We believe and demonstrate to a reasonable extent that C. circularis most likely was a part of Tawuia-like cylindrical body of algal origin. Specimens with notch/cleft and overlapping preservation, mostly recorded in the size range of 3–5 mm, are of special interest. Five different models proposed earlier on the life cycle of C. circularis are discussed. A new model, termed as ‘Hybrid model’ based on present multidisciplinary study assessing cylindrical and spherical shapes suggesting variable cell wall strength and algal affinity is proposed. This model discusses and demonstrates varied geometrical morphologies assumed by Chuaria and Tawuia, and also shows the inter-relationship of ChuariaTawuia complex.Structural engineering tool (thin walled pressure vessel theory) was applied to investigate the implications of possible geometrical shapes (sphere and cylinder), membrane (cell wall) stresses and ambient pressure environment on morphologically similar C. circularis and Tawuia. The results suggest that membrane stresses developed on the structures similar to ChuariaTawuia complex were directly proportional to radius and inversely proportional to the thickness in both cases. In case of hollow cylindrical structure, the membrane stresses in circumferential direction (hoop stress) are twice of the longitudinal direction indicating that rupture or fragmentation in the body of Tawuia would have occurred due to hoop stress. It appears that notches and discontinuities seen in some of the specimens of Chuaria may be related to rupture suggesting their possible location in 3D Chuaria.The micro-FTIR spectra of C. circularis are characterized by both aliphatic and aromatic absorption bands. The aliphaticity is indicated by prominent alkyl group bands between 2800–3000 and 1300–1500 cm−1. The prominent absorption signals at 700–900 cm−1 (peaking at 875 and 860 cm−1) are due to aromatic CH out of plane deformation. A narrow, strong band is centred at 1540 cm−1 which could be COOH band. The presence of strong aliphatic bands in FTIR spectra suggests that the biogeopolymer of C. circularis is of aliphatic nature. The wall chemistry indicates the presence of ‘algaenan’—a biopolymer of algae.  相似文献   
8.
Chemico-mineralogical attributes of authigenic clays associated with the altered volcanic tuffs that occur in the Palaeoproterozoic Porcellanite Formation contain evidences of hydrothermal alteration and diagenetic processes in a marine environment. Previous sedimentological and geochemical studies on Porcellanite Formation were restricted to the Chopan area, but, the details related to provenance, nature and source of volcanism archived in these clays have not been ascertained. In order to understand these aspects, present study on these authigenic clays were carried out. Clay minerals represent dominance of illite with subordinate amount of montmorillonite. Moreover, low abundance of kaolinite is also noticed. The illite fibers and plates associated with the kaolinite indicate illitization. The kaolinite to illite transformation is favoured by incorporation of K+ ions, derived from the K-feldspar dissolution and its overgrowth. Major oxide contents of these clays and their ratios when plotted over diagrams marked with standard illite, kaolinite, smectite and chlorite compositional fields show clustering within or close to the illite field. Thermodynamic components calculated for these clays when plotted over AR23+AlSi3O10(OH)2 − R23+Si4O10(OH)2 − AR2+R3+Si4O10(OH)2 ternary diagram, data plots lie within the illite, mixed layer I/S and smectite fields. Binary major oxide data plots between bulk rock and authigenic clay compositions showed felsic affinity. Montmorillonite and illite predominated in the eastern and western marginal areas of the Vindhyan Basin, respectively. However, former resulted from the hydrothermal alteration of volcanic glass associated with the ferruginous breccia and altered tuffs and remnants of the volcanic vents, whereas, later is associated with the tuffaceous beds. Owing to the adsorption, Ba, Rb and Sr is enriched in clays comparing to the bulk rock composition. Low (< 15 ppm) Sc values suggested major contribution from the felsic component. Also, low Rb/Sr and Th/U values revealed moderate insitu weathering. The dominance of K-feldspar alteration and insitu weathering is also evident from clustering of clay data plots in the A-CN-K ternary diagram. Pronounced negative Eu anomaly together with higher LREE/HREE values associated with these clay minerals implied proximity to source and their possible derivation from the silicified felsic tuffs available in the provenance.  相似文献   
9.
Vindhyan Basin of Central India situated just north of SONATA rift zone, forms one of the major geotectonic segment of the Indian subcontinent which is associated with complex thermo-tectonic history. Southern part of this basin is known to contain favorable conditions for hydrocarbon entrapment. Keeping this in view, a detailed gravity survey network comprising 40 gravity bases and 1500 data points in an area of about 110 × 100 km2 was planned in and around Jabera-Damoh region. Analysis of Bouguer and free air gravity anomaly maps, prepared using fractal based gridding method, indicates presence of two sedimentary basins (Jabera and Damoh) faulted on either sides beside ridge like features. However, well-known Jabera domal structure appeared to be a shallow feature only. Inversion of gravity data further reveals presence of 5 to 6 km thick Vindhyan sediments in the Jabera basin which are underlain by Mahakoshal/Bijawar group of rocks, resting directly over the lower crust, thereby indicating almost total absence of granitic crust from this region. It appears that due to an underlying thermal anomaly, the entire region may have been subjected to sustained uplift, deformation, erosion and consequent crustal extension during early to mid Proterozoics which brought high velocity mafic crust to such shallow levels.  相似文献   
10.
A large deposit of low-grade kaolinite is occurring within the rocks of Lower Vindhyan Supergroup southwest of Chittaurgarh, Rajasthan. The deposit is being utilised by open-cast, manual to semi-mechanised methods of mining. Kaolinite produced is being marketed without processing. Earlier, nearly 60% of the kaolinite produced from the area was consumed by cement industries, but in recent past, utilisation of low-grade kaolinite has been minimised by cement industries in production of ordinary cement and hence its production has significantly declined. Mineralogical studies reveal that kaolinite is the main clay-mineral and quartz, calcite, iron-oxides and biotite are present as non-clay minerals in clay deposit of the area. Chemical analysis of the kaolinite show that alumina ranges from 15 to 35% while, silica and iron varies from 51 to 78% and 0.25 to 2.50% respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号