首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
地球物理   1篇
地质学   2篇
  2008年   1篇
  2006年   1篇
  2004年   1篇
排序方式: 共有3条查询结果,搜索用时 140 毫秒
1
1.
Piera  Spadea  Massimo  D'Antonio 《Island Arc》2006,15(1):7-25
Abstract The Southern Uralides are a collisional orogen generated in the Late Devonian–Early Carboniferous by the collision of the Magnitogorsk island arc (MA) generated in the Early to Middle Devonian by intra‐oceanic convergence opposite to the continental margin, and the continental margin of the East European craton. A suture zone of the arc to the continental margin, the Main Uralian Fault (MUF), is marked by ophiolites and exhumed high‐pressure–low‐temperature metamorphic rocks of continental origin. The pre‐orogenic events of the Southern Urals and their geodynamic setting are traced by means of fluid‐immobile incompatible trace elements (rare earth elements and high field strength elements) and Sr–Nd–Pb isotope geochemistry of the MA suites, in particular the protoarc suite with boninites and probably ankaramites, and the mature arc comprised of island arc tholeiitic (IAT) suites, transitional IAT to calc‐alkaline (CA), and CA suites. The MA volcanics result in genetically distinct magmatic source components. In particular, depleted normal‐mid‐oceanic ridge basalt‐type mantle sources with various enrichments in a slab‐derived aqueous fluid component are evident. The enriched component is not involved in significant amounts, as testified by the rather radiogenic Nd isotopes and unradiogenic Pb isotopes. Further information on the pre‐orogenic events is provided by the Mindyak Massif metagabbros derived from diverse gabbroic protoliths that were affected by oceanic rodingitization, and subsequently by a high‐temperature (HT) metamorphism related to the development of a metamorphic sole. The HT metamorphism has the same age as the protoarc volcanism, and constrains the initiation of subduction at approximately 410 Ma. Consequently, the maximum timespan between initial intra‐oceanic convergence and final collision is approximately 31 my, a duration consistent with that of present‐day ongoing collisions in the western Pacific. The characteristics of early volcanism and the traces of a metamorphic sole provide useful criteria to attribute most MUF ophiolites to the Tethyan type with a complex pre‐orogenic evolution.  相似文献   
2.
The Urals are characterized by a depression of the Moho to a depth of 57 km. This structure is interpreted as a relic orogenic root, which has been conserved because no significant post-collisional processes occurred. However, there is evidence that voluminous post-collisional magmatism affected the lower crust. In this paper, we use thermal finite element models to quantify the influence of the post-collisional magmatism on the stabilization of the root. We show that at least 70% of the heat producing elements migrated in granitic melts from the lower crust to the upper crust. As a result the crustal heat flow reduced and the lithosphere could stabilize at a thickness of 180 km. Furthermore, we propose that a granulite metamorphic event during the thermal relaxation of the collision zone prevented the 57 km thick crust from delamination. These results strongly indicate that post-collisional processes were necessary for the stabilization of the Uralian crust and lithosphere.  相似文献   
3.
Ramon Carbonell   《Tectonophysics》2004,388(1-4):103
A seismic survey with a receiver spacing of 50 m provided one of the most densely sampled wide-angle seismic reflection images of the lithosphere. This unique data set, recorded by an 18-km-long spread, reveals that at wide-angles the shallow subcrustal mantle features high amplitude reflectivity which contrasts with a lack of reflectivity at latter travel times. This change in the seismic signature is located at approximately 120–150 km depth, which correlates with the depth estimates of the lithosphere–asthenosphere boundary (LAB) of previous DSS studies. This seismic signature can be simulated by two-layer mantle model. Both layers with similar average velocities differ in their degree of heterogeneity. The shallow heterogeneous layer and the deeper and more homogeneous one correlate with the lithosphere and the asthenosphere, respectively. Studies involving surface outcrops of ultramafic massifs and mantle xenoliths infer that the upper mantle is a heterogeneous mixture of ultramafic rocks (lherzolites, harzburgites, pyroxenites, peridotites, dunites, and small amounts of eclogites). Laboratory measurements of physical properties of these mantle rocks indicate that compositional variations alone can account for the wide-angle reflectivity. A temperature increase would homogenize the mixture, decreasing the seismic reflection properties due to melting processes. It is proposed that this would take place below 120–150 km (1200 °C, the LAB).  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号