首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
  国内免费   3篇
地质学   10篇
  2016年   2篇
  2014年   2篇
  2012年   1篇
  2006年   1篇
  2005年   3篇
  1995年   1篇
排序方式: 共有10条查询结果,搜索用时 31 毫秒
1
1.
More than 1400 km of two-dimensional seismic data were used to understand the geometries and structural evolution along the western margin of the Girardot Basin in the Upper Magdalena Valley. Horizons are calibrated against 50 wells and surface geological data (450 km of traverses). At the surface, low-angle dipping Miocene strata cover the central and eastern margins. The western margin is dominated by a series of en echelon synclines that expose Cretaceous–Oligocene strata. Most synclines are NNE–NE trending, whereas bounding thrusts are mainly NS oriented. Syncline margins are associated mostly with west-verging fold belts. These thrusts started deformation as early as the Eocene but were moderately to strongly reactivated during the Andean phase. The Girardot Basin fill records at least four stratigraphic sequences limited by unconformities. Several periods of structural deformation and uplifting and subsidence have affected the area. An early Tertiary deformation event is truncated by an Eocene unconformity along the western margin of the Girardot Basin. An Early Oligocene–Early Miocene folding and faulting event underlies the Miocene unconformity along the northern and eastern margin of the Girardot Basin. Finally, the Late Miocene–Pliocene Andean deformation folds and erodes the strata along the margins of the basin against the Central and Eastern Cordilleras.  相似文献   
2.
Several stratigraphic breaks and unconformities exist in the Mesoproterozoic successions in the northern margin of the North China Block.Geologic characters and spatial distributions of fve of these unconformities,which have resulted from different geological processes,have been studied.The unconformity beneath the Dahongyu Formation is interpreted as a breakup unconformity,representing the time of transition from continental rift to passive continental margin.The unconformities beneath the Gaoyuzhuang and the Yangzhuang formations are considered to be the consequence of regional eustatic fuctuations,leading to the exposure of highlands in passive margins during low sea-level stands and transgressive deposition on coastal regions during high sea-level stands.The unconformity atop the Tieling Formation might be caused by uplift due to contractional deformation in a back-arc setting,whereas the uplift after the deposition of the Xiamaling Formation might be attributed to a continental collision event.It is assumed that the occurrences of these unconformities in the Mesoproterozoic successions in the northern margin of the North China Block had a close bearing on the assemblage and breakup of the Columbia and Rodinia supercontinents.  相似文献   
3.
塔里木盆地志留系发育厚层沥青砂,显示优越的含油气性.继塔中地区志留系原油勘探取得突破之后,塔北地区志留系砂岩风化壳型储层也发现了工业油藏.根据原油的甾、萜烷和噻吩类生物标记化合物的分布特征,结合原油的物理化学性质以及族组分稳定碳同位素特征分析,明确了塔北西部英买35井区志留系风化壳原油来源于库车凹陷三叠系黄山街组湖相烃源岩,与塔北东部同发育在志留系风化壳剥蚀尖灭线附近的哈得18C井海相原油形成鲜明对比.通过志留系砂岩流体包裹体均一温度测试,结合地层埋藏史研究成果,推断英买35井区志留系砂岩主要成藏时间为距今5 ~ 8Ma的晚喜山期.结合库车凹陷两套陆相烃源岩的生烃演化重构了该区域湖相原油的成藏过程,表明康村组沉积后白垩系卡普沙良群与志留系风化壳是湖相油气向台盆区输导的重要通道,预示着湖相原油运移充注的范围十分广泛.成藏机理分析表明,志留系风化壳的构造幅度和面积控制了油气的充注范围,直接盖层的封盖条件控制了风化壳储层的含油气性.塔北地区东、西部志留系风化壳的暴露时间和地层组合关系的差异,是东部形成海相含油气系统,而西部发育海、陆相油藏垂向上叠置,互不交叉的复式含油气系统的重要原因.  相似文献   
4.
渤海湾盆地西部保定凹陷构造-地层层序与盆地演化   总被引:1,自引:0,他引:1       下载免费PDF全文
保定凹陷位于渤海湾盆地内冀中坳陷的西部, 西侧以太行山山前断层为界与太行山隆起相隔.凹陷内构造-地层层序的划分, 对研究其构造演化和油气勘探有着重要的意义, 对探讨太行山山前断层的发育特征也有一定的帮助.按照井、震结合的思路, 利用最新的钻井和地震资料, 并结合周缘的地质填图成果, 建立了保定凹陷的地层系统; 根据区域性不整合面的发育特征, 对保定凹陷构造-地层层序进行了划分; 利用平衡剖面技术, 分析了保定凹陷的构造演化.研究发现, 保定凹陷内发育了古近系孔店组底部和新近系馆陶组底部两个区域性角度不整合面, 据此将保定凹陷在纵向上划分为3个构造层: 基底构造层、断陷期构造层和拗陷期构造层.保定凹陷的形成演化经历了基底形成、古近纪断陷、渐新世末反转和新近纪-第四纪拗陷4个阶段, 其中, 古近纪断陷期又可以分为强烈断陷期、持续断陷期和断陷末期.  相似文献   
5.
A new stratigraphic nomenclature is proposed for the approximately 600 m thick, mainly clastic transitional sequence between the underlying Mempelam Limestone and overlying Kubang Pasu/Singa Formation in northwest Peninsular Malaysia. This sequence represents shallow marine deposits of the continental margin of the Sibumasu Terrane during the Middle Palaeozoic (Devonian–Carboniferous). It is separated into several formations. The Timah Tasoh Formation is an approximately 76 m sequence consisting of 40 m of laminated tentaculitid shales at the base, containing Monograptus yukonensis Jackson and Lenz and Nowakia (Turkestanella) acuaria Alberti, giving an Early Devonian (Pragian–Emsian) age, and about 36 m of rhythmically interbedded, light coloured argillo-arenites. The Chepor Formation is about 90 m thick and consists mainly of thick red mudstone interbedded with sandstone beds, of Middle to Late Devonian age. A new limestone unit is recognized and named the Sanai Limestone, which contains conodonts of Famennian age. The Binjal Formation consists of red and white mudstone interbedded with sandstone beds showing Bouma sequences. The Telaga Jatoh Formation is 9 m thick and consists mainly of radiolarian chert. The Wang Kelian Formation is composed of thick red mudstone beds interbedded with silty sandstone, and contain fossils indicative of an Early Carboniferous (Visean) age. The succession was deposited on the outer shelf, with depositional environments vertically fluctuating from prodelta to basinal marine. The Devonian–Carboniferous boundary is exposed at Hutan Aji and Kampung Guar Jentik, and indicates a major regressive event during the latest Devonian.  相似文献   
6.
The Late Permian/Early Triassic succession of the Central European Basin (CEB) was repeatedly affected by the tectonic pulses associated with the earliest phases of Tethyan and Arctic–North Atlantic rifting. Effects of the differential tectonic subsidence are particularly well recorded by unconformities, which form widespread sequence boundaries. Such unconformities are most obvious in areas occupied by fault-controlled intra-basinal highs (swells). In that areas, stratigraphic loss may comprise entire Lower and Middle Buntsandstein formations and in places remnant Middle Buntsandstein successions directly rest on Permian strata. Analysis of 3D-seismic data and well logs combined with high-resolution sedimentological logging of drillcores at the western margin of the Ems Trough (NW Germany) reveals details of synsedimentary tectonic control on sequence development. Early Triassic extensional faulting of basement blocks provided stepwise addition of accommodation space for continental sequences by growth faulting along north–south oriented fault zones blocks on the flanks of the East Netherlands High. This process is most evident during the development of the Hardegsen Unconformity, which is characterised by an amalgamation of succeeding unconformity surfaces in areas of structurally controlled intrabasinal highs.  相似文献   
7.
“His mind was like a soup dish—wide and shallow; ...” - Irving Stone on William Jennings Bryan
A compilation of the Sr-isotopic stratigraphy of the Bushveld Complex, shows that the evolution of the magma chamber occurred in two major stages. During the lower open-system Integration Stage (Lower, Critical and Lower Main Zone), there were numerous influxes of magma of contrasting isotopic composition with concomitant mixing, crystallisation and deposition of cumulates. Larger influxes correspond to the boundaries of the zones and sub-zones and are marked by sustained isotopic shifts, major changes in mineral assemblages and development of unconformities. During the upper, closed system Differentiation Stage (Upper Main Zone and Upper Zone), there were no major magma additions (other than that which initiated the Upper Zone), and the thick magma layers evolved by fractional crystallisation. The Lower and Lower Critical Zones are restricted to a belt that runs from Steelpoort and Burgersfort in the northeast, to Rustenburg and Northam in the west and an outlier of the Lower and Lower Critical Zone, up to the LG4 chromitite layer, in the far western extension north of Zeerust. It is only in these areas that thick harzburgite and pyroxenite layers are developed and where chromitites of the Lower Critical Zone occur. These chromitites include the economically important c. 1 m thick LG6 and MG1 layers exposed around both the Eastern and Western lobes of the Bushveld Complex. The Upper Critical Zone has a greater lateral extent than the Lower Critical Zone and overlies but also onlaps the floor-rocks to the south of the Steelpoort area . The source of the magmas also appears to have been towards the south as the MG chromitite layers degrade and thin northward whereas the LG layers are very well represented in the North and degrade southward. Sr and Os isotope data indicate that the major chromitite layers including the LG6, MG1 and UG2 originated in a similar way. Extremely abrupt and stratigraphically restricted increases in the Sr isotope ratio imply that there was massive contamination of intruding melt which “hit the roof” of the chamber and incorporated floating granophyric liquid which forced the precipitation of chromite (Kruger 1999; Kinnaird et al. 2002). Therefore, each chromitite layer represents the point at which the magma chamber expanded and eroded and deformed its floor. Nevertheless, this was achieved by in situ contamination by roof-rock melt of the intruding Critical Zone liquids that had an orthopyroxenitic to noritic lineage. The Main Zone is present in the Eastern and Western lobes of the Bushveld Complex where it overlies the Critical Zone, and onlaps the floor-rocks to the south, and the north where it is also the basal zone in the Northern lobe. The new magma first intruded the Northern lobe north of the Thabazimbi–Murchison Lineament, interacted with the floor-rocks, incorporated sulphur and precipitated the “Platreef” along the floor-rock contact before flowing south into the main chamber. This exceptionally large influx of new magma then eroded an unconformity on the Critical Zone cumulate pile, and initiated the Main Zone in the main chamber by precipitating the Merensky Reef on the unconformity. The Upper Zone magma flowed into the chamber from the southern “Bethal” lobe as well as the TML. This gigantic influx eroded the Main Zone rocks and caused very large-scale unconformable relationships, clearly evident as the “Gap” areas in the Western Bushveld Complex. The base of this influx, which is also coincident with the Pyroxenite Marker and a troctolitic layer in the Northern lobe, is the petrological and stratigraphic base of the Upper Zone. Sr-isotope data show that all the PGE rich ores (including chromitites) are related to influxes of magma, and are thus related to the expansion and filling of the magma chamber dominantly by lateral expansion; with associated transgressive disconformities onto the floor-rocks coincident with major zone changes. These positions in the stratigraphy are marked by abrupt changes in lithology and erosional features over which succeeding lithologies are draped. The outcrop patterns and the concordance of geochemical, isotopic and mineralogical stratigraphy, indicate that during crystallisation, the Bushveld Complex was a wide and shallow, lobate, sill-like sheet, and the rock-strata and mineral deposits are quasi-continuous over the whole intrusion.
F. Johan KrugerEmail:
  相似文献   
8.
Traditionally, seismic modeling has concentrated on one-dimensional borehole modeling and two-dimensional forward modeling of basic structural-stratigraphic schemes, which are directly compared with real seismic data. Two-dimensional seismic models based on outcrop observations may aid in bridging the gap between the detail of the outcrop and the low resolution of seismic lines. Examples include the Dolomites (North Italy), the Vercors (SE France), and the High Atlas (Morocco). The seismic models are generally constructed using the following procedure: (a) construction of a detailed lithologic model based on direct outcrop observations; (b) division of the lithologic model into lithostratigraphic units; (c) assignment of petrophysical properties to these lithostratigraphic units; (d) ray tracing to compute time- or depth sections of reflectivity; (e) convolution of the reflectivity sections with source wavelets of different frequencies. The lithologic detail modeled in the case studies led to some striking results, particularly the discovery of pseudo-unconformities. Pseudo-unconformities are unconformities in seismics, but correspond to rapid changes of dip and facies in outcrop. None of the outcrop geometries studied were correctly portrayed seismically at 25-Hz peak frequency. However, in some instances the true relationship would gradually emerge at peak frequencies of 50–100 Hz. The examples given in this study demonstrate that detailed, outcrop-derived, seismic models can reveal what stratigraphic relationships and features are likely to be resolved under ideal or less-ideal conditions, and what pitfalls may befall the interpreter of real seismic data.  相似文献   
9.
Several stratigraphic breaks and unconformities exist in the Mesoproterozoic successions in the northern margin of the North China Block.Geologic characters and spatial distributions of fve of these unconformities,which have resulted from different geological processes,have been studied.The unconformity beneath the Dahongyu Formation is interpreted as a breakup unconformity,representing the time of transition from continental rift to passive continental margin.The unconformities beneath the Gaoyuzhuang and the Yangzhuang formations are considered to be the consequence of regional eustatic fuctuations,leading to the exposure of highlands in passive margins during low sea-level stands and transgressive deposition on coastal regions during high sea-level stands.The unconformity atop the Tieling Formation might be caused by uplift due to contractional deformation in a back-arc setting,whereas the uplift after the deposition of the Xiamaling Formation might be attributed to a continental collision event.It is assumed that the occurrences of these unconformities in the Mesoproterozoic successions in the northern margin of the North China Block had a close bearing on the assemblage and breakup of the Columbia and Rodinia supercontinents.  相似文献   
10.
Although it has long been recognised that passive salt diapirism may encompass sub-ordinate cycles of active diapirism, where sedimentary overburden is periodically shed off the roof of the rising salt, there has been very little study of this process around exposed salt (halite) diapirs. However, the Late Miocene-Pliocene Sedom salt wall, on the western side of the Dead Sea Basin, presents an opportunity for detailed outcrop analysis of diapiric salt and the associated depositional and deformational record of its movement during both passive and active phases of diapirism. The sub-seismic scale record of diapirism includes sedimentary breccia horizons interpreted to reflect sediments being shed off the crest of the growing salt wall, together with exceptional preservation of rotated unconformities and growth faults. Areas of more pronounced dips directed towards the salt wall are capped by unconformities, and interpreted to represent withdrawal basins within the overburden that extend for at least 1500 m from the salt margin. Elsewhere, broad areas of upturn directed away from the salt extend for up to 1250 m and are marked by a sequence of rotated unconformities which are interpreted to bound halokinetic sequences. The margins of the salt wall are defined by steep extensional boundary faults that cut upturned strata, and have enabled rapid and active uplift of the salt since the Holocene. The Sedom salt wall therefore charts the transition from passive growth marked by withdrawal basins, growth faults and unconformities, to more active intrusion associated with major boundary faults that enable the rapid uplift of overburden deposited on top of the salt to ∼100 m above regional elevations in the past 43 ka. Individual cycles of passive and active diapirism occur over timescales of <30 ka, which is up to an order of magnitude less than typically suggested for other settings, and highlights the dynamic interplay between salt tectonics and sedimentation in an environment undergoing rapid fluctuations in water level.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号