首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
地球物理   1篇
地质学   4篇
自然地理   1篇
  2016年   1篇
  2012年   1篇
  2009年   1篇
  2005年   1篇
  2004年   1篇
  1988年   1篇
排序方式: 共有6条查询结果,搜索用时 343 毫秒
1
1.
Major and trace elements, noble gases, and stable (δD, δ18O) and cosmogenic (3H, 14C) isotopes were measured from geothermal fluids in two adjacent geothermal areas in NW-Mexico, Las Tres Vírgenes (LTV) and Cerro Prieto (CP). The goal is to trace the origin of reservoir fluids and to place paleoclimate and structural-volcanic constraints in the region. Measured 3He/4He (R) ratios normalized to the atmospheric value (Ra = 1.386 × 10−6) vary between 2.73 and 4.77 and are compatible with mixing between a mantle component varying between 42 and 77% of mantle helium and a crustal, radiogenic He component with contributions varying between 23% and 58%. Apparent U–Th/4He ages for CP fluids (0.7–7 Ma) suggest the presence of a sustained 4He flux from a granitic basement or from mixing with connate brines, deposited during the Colorado River delta formation (1.5–3 Ma). Radiogenic in situ 4He production age modeling at LTV, combined with the presence of radiogenic carbon (1.89 ± 0.11 pmC – 35.61 ± 0.28 pmC) and the absence of tritium strongly suggest the Quaternary infiltration of meteoric water into the LTV geothermal reservoir, ranging between 4 and 31 ka BP. The present geochemical heterogeneity of LTV fluids can be reconstructed by mixing Late Pleistocene – Early Holocene meteoric water (58–75%) with a fossil seawater component (25–42%), as evidenced by Br/Cl and stable isotope trends. CP geothermal water is composed of infiltrated Colorado River water with a minor impact by halite dissolution, whereas a vapor-dominated sample is composed of Colorado River water and vapor from deeper levels. δD values for the LTV meteoric end-member, which are 20‰–44‰ depleted with respect to present-day precipitation, as well as calculated annual paleotemperatures 6.9–13.6 °C lower than present average temperatures in Baja California point to the presence of humid and cooler climatic conditions in the Baja California peninsula during the final stage of the Last Glacial Pluvial period. Quaternary recharge of the LTV geothermal reservoir is related to elevated precipitation rates during cooler-humid climate intervals in the Late Pleistocene and Early Holocene. The probable replacement of connate water or pore fluids by infiltrating surface water might have been triggered by enhanced fracture and fault permeability through contemporaneous tectonic–volcanic activity in the Las Tres Vírgenes region. Fast hydrothermal alteration processes caused a secondary, positive δ18O-shift from 4‰ to 6‰ for LTV and from 2‰ to 4‰ for CP geothermal fluids since the Late Glacial infiltration.  相似文献   
2.
Northwestern Argentina was the site of the continental Salta rift in Cretaceous to Paleogene time. The Salta rift had a complex geometry with several subbasins of different trends and subsidence patterns surrounding a central high. Fault trends in the rift were extremely variable. There is evidence of normal and/or transfer faults trending N, NE, E and SE. It is not clear if all these faults were active at the same time, indicating a poorly defined extension direction, or if they formed in different, non-coaxial extension phases. In either case, their trends were very likely influenced by preexisting fault systems. Beginning in early Eocene time, the rift basins were superseded by Andean foreland basins and later became caught in the Andean thrust deformation propagating eastward, resulting in the inversion of rift faults. Due to their different orientations, not all faults were equally prone to reactivation as thrusts. N to NNE trending faults were apparently most strongly inverted, probably often to a degree where the traces of their normal fault origin have become obliterated. We present seismic evidence of moderately inverted N trending faults in the Tres Cruces basin and field examples of preserved E trending normal faults. However, reactivation sometimes also affects faults trending approximately parallel to the main Neogene shortening direction, indicating short-term deviations from the general pattern of Neogene thrust deformation. These pulses of orogen-parallel contraction may be linked to the intermittent activity of oblique transfer zones.  相似文献   
3.
Constructed wetlands and other aquatic habitat creation or restoration efforts offer both potential benefits and problems for arid areas. An unintentional consequence of these efforts has been the potential for an increase in local adult mosquito populations. Shallow water-emergent plant zones may provide ideal conditions for mosquito larval growth, and areas of high humidity, dense vegetation, and abundant birds and other wildlife may provide ideal conditions for adult mosquitoes. Three constructed wetlands in southern Arizona were studied over a period of years before and after they were constructed and operational. Mosquito populations were sampled using a variety of methods, primarily trapping of adults with CO2-baited traps. Populations apparently increased, sometimes by several orders of magnitude, after wetlands became operational. Several methods of mosquito abatement were initiated and their results are discussed. However, no definitive conclusions can be drawn because no untreated areas were available for comparison and many factors that may have affected mosquito populations also changed. Based on the experience gained at these three sites, mosquito control is an especially important design and management component for constructed wetlands in arid environments with low background populations of mosquitoes.  相似文献   
4.
Rates of shallow slip on creeping sections of the San Andreas fault have been perturbed on a number of occasions by earthquakes occurring on nearby faults. One example of such perturbations occurred during the 26 January 1986 magnitude 5.3 Tres Pinos earthquake located about 10 km southeast of Hollister, California. Seven creepmeters on the San Andreas fault showed creep steps either during or soon after the shock. Both left-lateral (LL) and right-lateral (RL) steps were observed. A rectangular dislocation in an elastic half-space was used to model the coseismic fault offset at the hypocenter. For a model based on the preliminary focal mechanism, the predicted changes in static shear stress on the plane of the San Andreas fault agreed in sense (LL or RL) with the observed slip directions at all seven meters; for a model based on a refined focal mechanism, six of the seven meters showed the correct sense of motion. Two possible explanations for such coseismic and postseismic steps are (1) that slip was triggered by the earthquake shaking or (2) that slip occurred in response to the changes in static stress fields accompanying the earthquake. In the Tres Pinos example, the observed steps may have been of both the triggered and responsive kinds. A second example is provided by the 2 May 1983 magnitude 6.7 Coalinga earthquake, which profoundly altered slip rates at five creepmeters on the San Andreas fault for a period of months to years. The XMM1 meter 9 km northwest of Parkfield, California recorded LL creep for more than a year after the event. To simulate the temporal behavior of the XMM1 meter and to view the stress perturbation provided by the Coalinga earthquake in the context of steady-state deformation on the San Andreas fault, a simple time-evolving dislocation model was constructed. The model was driven by a single long vertical dislocation below 15 km in depth, that was forced to slip at 35 mm/yr in a RL sense. A dislocation element placed in the seismogenic layer under XMM1 was given a finite breaking strength of sufficient magnitude to produce a Parkfield-like earthquake every 22 years. When stress changes equivalent to a Coalinga earthquake were superposed on the model running in a steady state mode, the effect was to make a segment under XMM1, that could slip in a linear viscous fashion, creep LL and to delay the onset of the next Parkfield-like earthquake by a year or more. If static stress changes imposed by earthquakes off the San Andreas can indeed advance or delay earthquakes on the San Andreas by months or years, then such changes must be considered in intermediate-term prediction efforts.  相似文献   
5.
The Tres Marias carbonate-hosted Zn–Ge deposit in Chihuahua, Mexico contains sphalerite with the highest average Ge (960 ppm) and willemite with the highest reported Ge contents of Mississippi-Valley-type (MVT) deposits worldwide. This has prompted current exploration efforts to focus on the deposit as a high-grade source of germanium. The sulfide-rich ore type (>125,000 t at 20% Zn and 250 g/t Ge) contains Fe-rich botryoidal sphalerite (type I) associated with solid hydrocarbons. This type exhibits distinctive intimately intergrown lamellar texture of high-Fe sphalerite (average 9.9 wt.% Fe and 800 ppm Ge) and a somewhat less Fe-rich sphalerite phase (average 5.5 wt.% Fe and 470 ppm Ge). Reddish-brown banded sphalerite (type II, average 5.7 wt.% Fe and 1,320 ppm Ge) is subordinately followed by galena and pyrite. The sulfide-poor “oxidized” zinc ore (up to 50 wt.% Zn; 250 to 300 ppm Ge) is a fine-grained, often friable, alteration product of the sulfide ore and associated limestone and breccia host. While some areas are dominated by carbonates and sulfates, others are enriched in silicates such as hemimorphite and willemite. The gangue assemblage includes goethite, hematite, and amorphous silica or quartz. Minor wulfenite, greenockite, cinnabar, and descloizite also occur. Willemite occurs as interstitial replacement of sphalerite and fracture fillings in the oxidized ore and can be unusually rich in Pb (up to 2.0 wt.%) and Ge (up to 4,000 ppm). Oscillatory zonation reflects trace element incorporation into willemite from the oxidation of primary Ge-bearing sphalerite and galena by siliceous aqueous fluids. The Tres Marias deposit has hybrid characteristics consisting of a primary low-temperature MVT Ge-rich Zn–Pb sulfide ore body, overprinted by Ge-rich hemimorphite, willemite, and Fe oxide mineralization.  相似文献   
6.
Subsurface reservoir temperatures of two important Mexican geothermal systems (Los Azufres and Las Tres Vírgenes) were estimated by applying all available solute geothermometers for 88 and 56 chemical data measurements of the spring waters and fluids of the deep geothermal wells, respectively. Most of the chemical data for spring water of these two geothermal fields are for HCO3 water, followed by SO4 and Cl types. For the Los Azufres geothermal field (LAGF), the reservoir temperatures estimated by Na-K geothermometers for springs of HCO3 and SO4 waters, and by Na-Li and Li-Mg geothermometers for Cl water, are close to the average bottom-hole temperature (BHT) of the geothermal wells. However, all reservoir temperatures for spring waters from the Las Tres Vírgenes geothermal field (LTVGF) estimated by all solute geothermometers indicated significantly large differences (low temperatures) compared to the BHT. Evaluation of inferred reservoir temperatures for spring waters of the LAGF and LTVGF suggests that not all springs nor all solute geothermometers provide reliable estimation of the reservoir temperatures. Even though chemical equilibrium probably was not achieved in the water–rock system, Na-K geothermometers for HCO3 water (peripheral water mainly of meteoric origin with little geothermal component) and SO4 water (geothermal steam heated) and Na-Li and Li-Mg geothermometers for Cl-rich spring water (fully mature geothermal water) of the LAGF indicated reservoir temperatures close to the BHT. However, in comparison with the geothermometry of spring water of the LAGF and LTVGF, fluid measurements from geothermal wells of these two fields indicated reservoir temperatures in close agreement with their respective BHTs. For the best use of the solute geothermometry for spring water, it is advisable to: (1) chemically classify the springs based on water types; (2) identify and eliminate the discordant outlier observations by considering each water type as a separate sampled population; (3) apply all available solute geothermometers employing a suitable computer program such as SolGeo instead of using some specific, arbitrarily chosen geothermometers; and (4) evaluate the temperatures obtained for each solute geothermometer by considering the subsurface lithology, hydrological conditions, and BHTs or static formation temperatures whenever available.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号