首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   1篇
  国内免费   1篇
地球物理   1篇
地质学   16篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2013年   1篇
  2011年   1篇
  2007年   1篇
  2006年   3篇
  2005年   1篇
  2003年   1篇
  1999年   1篇
  1996年   1篇
  1995年   1篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
The Dvuyakornaya Formation section in the eastern Crimea is described and subdivided into biostratigraphic units based on ammonites, foraminifers, and ostracodes. The lower part of the formation contains first discovered ammonites of the upper Kimmeridgian (Lingulaticears cf. procurvum (Ziegler), Pseudowaagenia gemmellariana Olóriz, Euvirgalithacoceras cf. tantalus (Herbich), Subplanites sp.) and Tithonian (?(Lingulaticeras efimovi (Rogov), Phylloceras consaguineum Gemmellaro, Oloriziceras cf. schneidi Tavera, and Paraulacosphinctes cf. transitorius (Oppel)). Based on the assemblage of characteristic ammonite species, the upper part of the formation is attributed to the Berriasian Jacobi Zone. Five biostratigraphic units (zones and beds with fauna) distinguished based on foraminifers are the Epistomina ventriosa-Melathrokerion eospirialis Beds and Anchispirocyclina lusitanica-Melathrokerion spirialis Zone in the upper Kimmeridgian-Tithonian, the Protopeneroplis ultragranulatus-Siphoninella antiqua, Frondicularia cuspidiata-Saracenaria inflanta zones, and Textularia crimica Beds in the Berriasian. The Cyrherelloidea tortuosa-Palaeocytheridea grossi Beds of the Upper Jurassic and Raymoorea peculiaris-Eucytherura ardescae-Protocythere revili Beds of the Berriasian are defined based on ostracodes. A new biostratigraphic scale is proposed for the upper Kimmeridgian-Berriasian of the eastern Crimea. The Dvyyakornaya Formation sediments are considered as deepwater facies accumulated on the continental slope.  相似文献   
2.
Based on ammonites, Upper Kimmeridgian sediments are first established in the Crimean Mountains. The Kimmeridgian-Tithonian boundary recognizable in a continuous section is placed inside the Dvuyakomaya Formation of uniform largely clayey sediments. Assemblages of Kimmeridgian ammonites Lingulaticeras cf. procurvum (Ziegler), Pseudowaagenia gemmellariana Oloriz, Euvirgalithacoceras cf. tantalus (Herbich), Subplanites sp.) and Tithonian forms (?Lingulaticeras efimovi (Rogov), Phylloceras consaguineum Gemmellaro, Oloriziceras cf. schneidi Tavera, and Paraulacosphinctes cf. transitorius (Oppel) are described. A new biostratigraphic scheme proposed for the upper Tithonian-Berriasian of the Crimean Mountains includes the following new biostratigraphic units: the Euvirgalithacoceras cf. tantalus Beds of the upper Kimmeridgian, ?Lingulaticeras efimovi Beds of the lower Tithonian, and Oloriziceras cf. schneidi and Paraulacosphinctes cf. transitorius beds of the upper Tithonian. The middle Tithonian is proposed to consist of the fallauxi and semiforme (presumably) zones. The ammonities found determine the early Kimmeridgian-Berriasian age of the Dvuyakornaya Formation that is most likely in tectonic contact with the underlying Khutoran Formation.  相似文献   
3.
Late Jurassic and Early Cretaceous charophyte assemblages from the northern part of the Aquitaine Basin in south-west France are reviewed here to understand their palaeoecological, palaeobiogeographical and biostratigraphic features. Three sites were studied: the Tithonian-lower Berriasian of Chassiron, and the Berriasian of Cherves-de-Cognac and Angeac-Charente. Abundant porocharaceans, less abundant clavatoraceans and scarce characeans recorded in Cherves-de-Cognac and Angeac-Charente indicate that brackish water environments were substituted by freshwater environments eastwards. The occurrence of Clavator grovesii var. grovesii and morphotypes intermediate with C. grovesii var. discordis in the same areas is significant from a biostratigraphic viewpoint, since these species belong to the Maillardii, Incrassatus and Nurrensis European charophyte biozones, representing the Berriasian. This observation refutes a previous dating of the Angeac-Charente site and highlights the absence of Hauterivian–Barremian records in northern Aquitaine, which is in contrast to the more complete Lower Cretaceous record in southern Aquitaine. These contrasting records could be due to differences in the available sedimentary space produced by the opening of the Bay of Biscay during the Barremian.  相似文献   
4.
Mexico is usually considered to have formed the western end of the Tethys during Late Jurassic and Early Cretaceous times. The circumstances of the opening of the Gulf of Mexico Basin towards the Tethys and the exact stratigraphic timing, however, are not clear. Four sections covering this time interval, located in northeastern Mexico, have been measured and sampled in detail, in order to clarify their stratigraphic position during the Late Jurassic to Early Cretaceous time interval and the paleogeographic and oceanographic changes that accompanied this opening. Our studies include microfacies, micro- and macropaleontology, whole rock and clay-mineral x-ray diffraction and stable isotopes analyses. Our data indicate that the Jurassic-Cretaceous boundary, as defined by the Lyon-Neuchâtel Colloquium of 1973, cannot be determined precisely in northeastern Mexico due to the near-absence of calpionellids and endemism of ammonite taxa. In the lower and upper Berriasian sediments, we detected Mediterranean ammonite taxa so far unknown from Mexico, corresponding to the appearance of typical calpionellid-rich facies. These faunas allow direct biostratigraphic correlation with European ammonite and calpionellid zones.We propose that a major oceanographic change occurred in the upper part of calpionellid Zone B of the Early Berriasian. At this time, sediments in northeastern Mexico present increasingly pelagic facies, a dramatic appearance of Tethyan microfossils (calpionellids) and ammonites, changes in stable isotopic values, whole rock and clay-mineral mineralogy. We suggest that these changes are due to a global sea-level rise that connected directly northeastern Mexico to the European Tethys and ended the endemic, semi-restricted and anoxic environment of the Late Jurassic La Casita and equivalent La Caja and La Pimienta Formations.  相似文献   
5.
A well-preserved radiolarian fauna from a clastic unit of the Khabarovsk accretionary complex (southern part of the Badzhal accretionary wedge terrane in the Russian Far East) is assigned to the basal part of the Pseudodictyomitra carpatica zone. The age of the fauna is most likely late Tithonian. This is the first reliable dating of the clastic unit and makes it possible to constrain the timing of subduction accretion in the Badzhal terrane. The Khabarovsk complex is correlated chronologically with the Bikin and Samarka terranes (Russian Far East), Mino, Southern Chichibu and North Kitakami terranes (Japan), and Nadanhada terrane (northeast China).  相似文献   
6.
Quantitative analysis of sediment composition was performed on a kilometre wide section of Upper Tithonian low relief (up to 70 m), gently inclined (3° to 15°), sigmoidal carbonate clinoforms (eastern Sardinia) to identify changes in sediment composition along the slope and across the studied succession. These changes may reflect modifications of the carbonate factory and of processes responsible for sediment transport. Point‐count analysis of carbonate microfacies, Q‐mode/R‐mode cluster analysis and Spearman’s rank provided a composition‐based classification of microfacies and highlighted relationships among sediment components. The studied clinoforms are mainly composed of non‐skeletal grains (70%), such as peloids and lithoclasts, together with micrite and cements and only a limited contribution from coated grains (2%). Among skeletal grains (28%), the greatest contribution derives from a coral–stromatoporoid–encruster reef that provided 15% of the components. Crinoids, brachiopods and other along‐slope thriving biota provided nearly 5% of the allochems, whilst fragments of molluscs (gastropods, bivalves and diceratids) from the backreef sourced another 2%. The contribution of platform interior biota is negligible (1%). The association of composition‐based facies varies along the slope. The upper slope beds consist of coral‐stromatoporoid grainstone to rudstone; the middle slope deposits are dominated by encruster‐lithoclast grainstone and packstone. At the lower slope, peloidal lithoclastic packstone as well as brachiopod–crinoidal wackestone prevail. Also the association of skeletal grains changes along the slope. The encruster–frame builder association typifies the upper slope whilst encrusters characterize the middle slope sediments. In the lower slope encrusters are equally represented as the brachiopod–crinoid association. Along‐slope compositional changes evidence a scarce downslope transport of frame builders and a progressive enrichment in along‐slope thriving biota. Quantitative analysis of microfacies allowed the sigmoidal clinoforms to be grouped into six sets. Each set gathers sigmoids with a similar sediment composition. Coated grains are dominant in the first set whilst they are lacking in the overlying sets reflecting a change in the carbonate factory. Other major compositional changes among the sets concern the relative amounts of peloids, micrite, frame builders (corals and stromatoporoids) and encrusters. The contribution of peloids varies inversely to that of cements and micrite as evidenced in the third and fifth sets which, respectively, record the highest occurrence of peloids or cement and micrite. Variations in the amount of frame builders and encrusters are instead non‐linear. High percentages of both frame builders and encrusters, as recorded in the second and fifth sets, are related to low amounts of peloids and lithoclasts that probably reflect episodes of reduced background sedimentation. This study demonstrates that quantitative analysis of carbonate microfacies represents a powerful tool that can improve the reconstruction of the stacking pattern in carbonate slope successions both in outcrop and in subsurface settings.  相似文献   
7.
Calpionellids and chitinoidellids were identified from exotic limestone clasts occurring in flysch deposits of the Early Cretaceous to Oligocene age from the Silesian and Subsilesian nappes of the Polish Outer Carpathians. They represent the remnants of carbonate sedimentation along the northern and southern margin of the Severin-Moldavidic Basin, areas which are no longer preserved on the surface. Chitinoidellid and calpionellid assemblages characterize the Chitinoidella, Crassicollaria and Calpionella zones (latest early Tithonian–early Berriasian). The calpionellid zonation for the Western Carpathians was used for the present study, but some difficulties were encountered resulting from the application of this zonation. Cathodoluminescence imaging (CL) was useful for the identification of these microfossils in samples containing sparse and poorly preserved specimens, especially in the studied shallow-water limestone (the so-called Štramberk-type limestones).  相似文献   
8.
A detailed bed-by-bed sampling within the Pimienta and the Lower Tamaulipas Formations from a section in the Apulco area (Puebla State, Eastern Mexico), allows the delimitation of the Jurassic/Cretaceous boundary. The Late Tithonian was identified by the presence of calpionellids of the Crassicollaria Zone (Colomi Subzone) and calcareous dinocysts of the Proxima Zone. The Tithonian/Berriasian boundary was placed at the acme of Calpionella alpina (small forms) between samples MZT 45–46. The Berriasian was divided into two main units, namely the Calpionella Zone, further subdivided into the Alpina, Ferasini and Elliptica subzones, and the Calpionellopsis Zone, within which only the Oblonga subzone was identified. The vertical distribution of calpionellids and their assemblages in the biozones of this Mexican section fit those from other Tethyan areas.  相似文献   
9.
Sediments of Kimmeridgian and Tithonian age are well exposed on the Boulonnais coast of northern France between Equihen and Cap Gris Nez and on the south coast of England at and adjacent to Kimmeridge Bay. Both successions were deposited on a marine shelf and lie within the Subboreal faunal province which enables detailed correlations to be made between them based on ammonite assemblages. They are, however, lithologically markedly different due to their environmental settings: close to a land area in the case of the Boulonnais and within a depositional basin in the case of Kimmeridge. The succession adjacent to the Kimmeridgian-Tithonian boundary exposed in the Boulonnais is highly condensed and laterally variable with more attenuated successions occurring close to the former Anglo-Brabant Massif land area. The boundary occurs at the end of a succession of up to six regressive-transgressive events that onlap the land area. This is in contrast to that at outcrop at Kimmeridge, where the Kimmeridgian-Tithonian boundary is marked by a correlative conformity in an unbroken basinal succession. The cliff and foreshore exposures in the Kimmeridge area provide the only unbroken succession in the Subboreal faunal province of the beds adjacent to the Kimmeridgian-Tithonian boundary.  相似文献   
10.
刘建兵  J C Aitchison 《新疆地质》2003,21(1):116-117,T001
羊卓绒错混杂岩是一条长达2 000 km的构造破碎岩带,出露于西藏南部雅鲁藏布江缝合带以南.该缝合带于新生代欧亚碰撞后闭合,记录了特提斯海洋中的残留部分.混杂岩发育于印度板块北部大陆边缘与其以北地体的一次大的碰撞事件中.这次碰撞到底是欧亚碰撞的主事件还是一次早期碰撞事件尚不确定.由于混杂岩是碰撞期间地层不断破碎而形成的,因此地层中的任何岩石古生物学资料对于确定混杂岩的成因及形成时代是有意义的.该混杂岩中发育大量的放射虫硅质岩和燧石,它们可以提供大量的古生物学证据.文中所描述的提索期放射虫,采自于江孜县白洒村附近的一个原地岩块.为典型的东特提斯属种,可与西特提斯的属种对比,其中大部分属种为主要属种,有稳定的地层时限分布,如:Archaeodictyomitra apiarium(Rust),Archaeodictyomitra minoensis(Mizutani), Archaeodictyomitra patricki Jud,Eucyrtidiellium pyramis(Atta),和Protunuma japonicus Matsuoka &Yao,它们分别对应于在西特提斯所建立起来的“统一组合区带”(Unitary Association Zone)的8—22,9—12,13—22,12—13,7—12区带,尤其是后4个放射虫种,有非常短的地层分布,能够将地层年代确定得非常具体.这对于西藏广泛分布的海相含放射虫岩石地层来说,是一个非常有效的  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号