首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地质学   2篇
  2014年   1篇
  2010年   1篇
排序方式: 共有2条查询结果,搜索用时 62 毫秒
1
1.
Recent explorations in Cueva Charles Brewer, a large cave in a sandstone tepui, SE Venezuela, have revealed silica biospeleothems of unprecedented size and diversity. Study of one — a sub-spherical mass of opaline silica — reveals a complex, laminated internal structure consisting of three narrow dark bands alternating with two wider light bands. Uranium-thorium dating has produced 3 stratigraphically correct dates on the light bands from 298 ± 6 (MIS 9) to 390 ± 33 ka (MIS 11). U concentration is only 30-110 ppb. Initial 234U/238U ratios are high and increase over time from 1.8 to 5.3. Growth rate is very low, the fastest, at 0.37 ± 0.23 mm/ka, in MIS 9. Trace element and heavy metal content of the dark bands is distinctly higher than that of the light bands. It is hypothesized that the dark and light bands correlate with drier/glacial and wetter/interglacial periods, respectively, and that this sample probably began to grow in MIS 13. The cave is in a region that straddles a regionally important ecotone: the speleothem isotopic and trace element variations may preserve a useful paleoclimatic signal. This is the first published suite of U-Th dates from a single silica speleothem and the longest Quaternary record for this region.  相似文献   
2.
Gypsum (CaSO4·2H2O), alunite (KAl3(SO4)2(OH)6), and rare phosphate–sulphate sanjuanite Al2(PO4)(SO4)(OH) 9(H2O) and rossiantonite (Al3(PO4)(SO4) 2(OH)2(H2O)14) have recently been identified as secondary mineral deposits in different quartz‐sandstone caves in the Gran Sabana region, Venezuela. Due to the extended time scale required for speleogenesis in the hard and barely soluble quartz‐sandstone lithology, these caves are considered to be as old as 20 to 30 My. The study of these peculiar secondary mineral deposits potentially reveals important insights for understanding the interaction between deep, superficial and atmospheric processes over thousands to perhaps millions of years. In this study, chemical and petrographic analyses of potential host rock sources, sulphur and oxygen isotope ratios, and meteorological, hydrological and geographical data are used to investigate the origin of sulphates and phospho–sulphates. The results suggest that the deposition of sulphates in these caves is not linked to the quartz‐sandstone host rock. Rather, these mineral deposits originate from an external atmospheric sulphate source, with potential contributions of marine non‐sea salt sulphates, terrestrial dimethyl sulphide and microbially reduced H2S from the forests or peatbogs within the watershed. Air currents within the caves are the most plausible means of transport for aerosols, driving the accumulation of sulphates and other secondary minerals in specific locations. Moreover, the studied sulphate minerals often co‐occur with silica speleothems of biological origin. Although this association would suggest a possible biogenic origin for the sulphates as well, direct evidence proving that microbes are involved in their formation is absent. Nonetheless, this study demonstrates that these quartz‐sandstone caves accumulate and preserve allogenic sulphates, playing a yet unrecognized role in the sulphur cycle of tropical environments.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号