首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  国内免费   1篇
地质学   5篇
  2014年   1篇
  2011年   2篇
  1999年   1篇
  1989年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Tektite glasses are investigated using 57Fe Mössbauer spectroscopy. Room temperature spectra analysis is performed using two complementary analytical methods based on two-dimensional distributions of both isomer shift and quadrupole splitting. No a priori correlation between the two hyperfine parameters is considered. The first method, based on a shape independent distribution, provides the justification for the Gaussian distribution shape used in the second method. No ferric iron contribution is evidenced by Mössbauer spectra analysis in these samples, although several criteria are used. Ferrous iron sites are shown to be continuously distributed between four- and five-fold co-ordinated sites.  相似文献   
2.
Vitreous materials are quite routinely found in natural settings. Most of them are aluminosilicates, which often occur in large deposits. Considering the geological formations in which naturally occurring vitreous aluminosilicates are found, they have generally remained stable for more than 1 Ma on the earth's surface, even in different geological and climatic environments. These non-crystalline solids played a very important role in the development of ancient human civilizations, long before the introduction of metallic tools. Today, however, the properties of natural glasses are of interest to mankind for completely different reasons. For example, industrial glasses are used today for encapsulating toxic wastes, especially radioactive waste, which remains active for centuries or more, in order to prevent the unwanted transfer of harmful materials to the environment. The chemical compositions of industrially produced glasses are in large part different from the compositions of natural glasses. Little is quantitatively known about the stability of industrial glasses over very long periods of time (>10,000 years). However, the physical and chemical stability of natural aluminosilicate glasses is known to extend over very long periods of time.The advancement of technological design to prevent or at least minimize the melt down of toxic waste during the encapsulation process is currently a major challenge, using glasses of natural chemical composition. Brecciated glass, which is found frequently in natural settings, provides a special clue to the possibility of producing vitreous solids by sintering glass fragments without melting the cullets. It is essential to prevent melting of the cullets because the melt has the potential of chemically reacting with the toxic waste.This paper summarizes the geological, chemical, and physical facts concerning naturally produced glasses, and seeks to establish a recognized database for further research in the domain of understanding the glass-forming processes that occur in nature. Furthermore, the authors hope to stimulate research into the utilization of natural resources that to solve the problem of storing of toxic waste safely.Major and trace element data have been collected over the past 100 years. These data constitute a sufficient basis for the chemical characterization of natural glasses. More information about the major elements is not required, in order to understand the chemical properties of these materials. On the other hand, large gaps in compositional data exist where other related components are concerned: e.g., in the case of “water-species”, with its different forms of bonding in silicates or oxygen (oxygen fugacity), CO2-, sulphur - or hydrocarbons (methane)-, hydrogen-, chlorine-and fluorine-species. All these components have a significant impact on the properties of glasses, even when present only in minor quantities. Glass textures and crystal morphologies reflect the processes of nucleation and crystal growth in a glass-forming matrix during the cooling and reheating cycles which are currently not thoroughly understood. In nature, the processes that led to the formation of vitreous materials are very different from those used in the production of industrial glasses. The different genetic conditions under which glass formation occurs permit differentiation between magmatic and metamorphic vitreous solids. Sedimentary and biogenetic processes also contribute to the formation of non-crystalline solids.  相似文献   
3.
In hypervelocity meteorite impacts, shock energies produce temperatures well above the melting point of a wide area of the impacted target rocks. This produces impact melt during excavation and expansion of the transient crater cavity. The vast majority of this melt is retained in the crater-fill stratigraphy where it may form coherent melt units and/or be variably mixed with non-molten target rocks. A small portion (1–3%) of this melt is ejected from the crater at very high velocities – potentially faster than the impactor itself – forming impact glasses and, in rare cases, tektites. Why only some impacts form large volumes of high velocity impact glass and even fewer form tektites remains poorly understood. Many of the expected theoretical controls on the production and dispersal of high-velocity impact melt (target rock type, impact size, impact angle) do not seem to apply; comparison of the volume and nature of ejected melt around complex and simple craters on Earth reveals no systematic relationship to any of these parameters. The geologic evidence suggests that there is another controlling mechanism that promotes production of high velocity impact melt and tektite formation in some impacts. The Darwin impact event shows clearly that the presence of water rich surface layers in the target stratigraphy enhances by orders of magnitude the production of high velocity ejected melt; as hinted at by some numerical models. For tektites from all four strewn fields, the presence of water rich surface layers at the impact site can be inferred and it seems this is the missing feature of the target stratigraphy required to explain tektite origin.  相似文献   
4.
5.
几种天然玻璃的氧平均体积   总被引:2,自引:0,他引:2  
通过计算天然玻璃的氧平均体积,发现该值对于雷公墨来说基本为一常数,未显示出冲击压力的影响。火山玻璃的氧平均体积与沸石、橙玄玻璃相近,由此得出沸石、橙玄玻璃形成时体积变化趋势。氧平均体积与密度的倒数成良好直线关系,不同玻璃有不同的直线。橙玄玻璃的氧平均体积和其中水的分子体积表明水是以单个分子进入玻璃结构,类似“结晶水”和“沸石水”,而不是聚合状态的水。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号