首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
地质学   5篇
海洋学   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2008年   2篇
  1982年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Cenomanian, Turonian and Coniacian ostracods from a borehole in the coastal zone of the Tarfayan Basin, south-western Morocco, display affinities with associations from Algeria, Tunisia and the Middle East as well as with the Iberian Peninsula. Relationships with central and southern West Africa are relatively slight, which could be a result of palaeoecological particularities.  相似文献   
2.
Lithological evidence, benthic foraminiferal census counts, and X-ray fluorescence (XRF) scanner-derived elemental data were integrated with planktonic foraminiferal biostratigraphy and bulk carbonate stable isotopes to retrace the Turonian to early Campanian paleoenvironmental evolution and sea-level history of the Tarfaya Atlantic coastal basin (SW Morocco). The lower Turonian is characterized by laminated organic-rich deposits, which contain impoverished benthic foraminiferal assemblages, reflecting impingement of the oxygen minimum zone on the shelf during a sea-level highstand. This highstand level is correlated to the global transgressive pulse above the sequence boundary Tu1. The appearance of low-oxygen tolerant benthic foraminiferal assemblages dominated by Gavelinella sp. in the middle to upper Turonian indicates an improvement in bottom water oxygenation, probably linked to offshore retraction of the oxygen minimum zone during a regressive phase. This interval is marked by major regressive events expressed by a series of erosional truncations associated with the prominent sequence boundaries Tu3 and/or Tu4. Dysoxic–anoxic conditions recorded in the upper Santonian of the Tarfaya Basin coincide with the eustatic sea-level rise prior to Sa3 sequence boundary. The lower Campanian transgression, only recorded in the southern part of the Tarfaya Basin, coincided with substantial deepening, enhanced accumulation of fine-grained clay-rich hemipelagic sediments and improved oxygenation at the seafloor (highest diversity and abundance of benthic foraminiferal assemblages). Stable isotope data from bulk carbonates are tentatively correlated to the English Chalk carbon isotope reference curve, in particular the Hitch Wood Event in the upper Turonian, the Navigation Event in the lower Coniacian, the Horseshoe Bay Event in the Santonian and the Santonian/Campanian Boundary Event.  相似文献   
3.
An abundant and diverse nannoflora occurs across the Cenomanian/Turonian (C/T) boundary at Tazra in the Tarfaya Basin of southern Morocco. The nannoflora of this sequence permits recognition of three biozones (CC10-CC12), three subzones (CC10a, CC10b and CC10c), and thirteen important nannolith bioevents previously reported from this interval elsewhere. The floral record shows erratic species abundance fluctuations that clearly vary with lithology and reflect at least in part preservational bias and diagenetic processes. In general, four dissolution resistant taxa are dominant: Watznaueria barnesae, Eiffellithus turriseiffelii, Eprolithus floralis, and Zeugrhabdotus spp. The late Cenomanian Zone CC10 marks a rapid excursion in ∂13C and is characterized by the successive extinction of four taxa, which are widely recognized as reliable biomarkers: Corollithion kennedyi, Axopodorhabdus albianus, Lithraphidites acutus, and Helenea chiastia. This interval is also marked by high species richness and high abundance of the tropical species Watznaueria barnesae, suggesting warm tropical waters. The subsequent ∂13C plateau and organic carbon-rich black shale deposition of the oceanic anoxic event (OAE2) is characterized by low species richness, but high nannofossil abundance, and peak abundance of the cool water and high productivity indicator Zeugrhabdotus spp., followed by the first peak abundance of cool water Eprolithus floralis. This interval correlates with the planktic foraminiferal diversity minimum and the Heterohelix shift, which marks the expansion of the oxygen minimum zone (OMZ). The C/T boundary is identified based on the FO of Quadrum gartneri, which is <1 m below the FO of the planktic foraminifer C/T marker Helvetoglobotruncana helvetica. In the early and middle Turonian, the two dominant species, tropical W. barnesae and cool water E. floralis, alternate in abundance and suggest fluctuating climatic conditions.  相似文献   
4.
Profound biotic changes accompanied the late Cenomanian δ13C excursion and OAE2 in planktic foraminifera in the Tarfaya Basin of Morocco. Planktic foraminifera experienced a severe turnover, though no mass extinction, beginning with the rapid δ13C excursion and accelerating with the influx of oxic bottom waters during the first peak and trough of the excursion. Species extinctions equaled the number of evolving species, though only the disaster opportunists Guembelitria and Hedbergella thrived along with a low oxygen tolerant benthic assemblage. The succeeding δ13C plateau and organic-rich black shale deposition marks the anoxic event and maximum biotic stress accompanied by a prolonged drop in diversity to just two species, the dominant (80–90%) low oxygen tolerant Heterohelix moremani and surface dweller Hedbergella planispira. After the anoxic event other species returned, but remained rare and sporadically present well into the lower Turonian, whereas Heterohelix moremani remained the single dominant species. The OAE2 biotic turnover suggests that the stress to calcareous plankton was related to changes in the watermass stratification, intensity of upwelling, nutrient flux and oxic levels in the water column driven by changes in climate and oceanic circulation. Results presented here demonstrate a 4-stage pattern of biotic response to the onset, duration, and recovery of OAE2 that is observed widely across the Tethys and its bordering epicontinental seas.  相似文献   
5.
The paper presented is the first comprehensive, fully quantitative, high resolution study of marine palynology from an OAE3 black-shale environment. It is based on 175 m core spanning the upper Turonian to lower Santonian at Tarfaya, Morocco, NW Africa, which has been sampled from centimetre to 3 m intervals. The results are integrated and discussed with lithology and geochemistry data to (1) distinguish between potential changes in production and preservation of total organic carbon (TOC) accumulation and (2) constrain the stratigraphic position of the Oceanic Anoxic Event 3 (OAE3).The succession is characterized by increased total organic carbon (TOC), varying between 1% and 19% (average about 6%). Distinct black-shale horizons of variable thickness appear episodically throughout the succession, with higher frequency in the late Turonian. Higher TOC contents do not strictly correlate to lithologic black-shales or peaks of a specific taxon of organic-walled algae. The palynomorph spectrum is strongly dominated by organic-walled algae, with the ratio of terrigenous sporomorphs to organic-walled algae (t/m index) varying between zero and 0.05 (average 0.01). The dominance of algal organic matter is corroborated by the prevalence of Type I kerogen identified using Rock-Eval pyrolysis. Dinocyst diversity is low, with the absolute taxa number varying from 7 to 27 between single samples. The peridinioid/gonyaulacoid ratio of dinocysts (p/g ratio) shows strong fluctuations, varying between 1 and 283 (average of about 100).The upper Turonian interval is dominated by Bosedinia spp., a dinocyst taxon formerly described as abundant only in lacustrine sediments from the Oligocene and Miocene of SE Asia. This dominance is episodically modified by the increase of the warm-temperate waters dinocysts fraction, here mainly represented by the genera Alterbidinium, Isabelidinium and Spinidinium. Within the Coniacian-Santonian, black-shale horizons are limited in number and are concentrated within the upper Coniacian to lower Santonian interval. The dinocysts show alternating, prominent peak abundances of Palaeohystrichophora spp. and the warm-temperate water dinocysts fraction, here mainly represented by the genera Trithyrodinium and Chatangiella. However, a final episode of increased proportions of Bosedinia spp. is confined to a 5 m thick black-shale horizon closely spanning the Coniacian-Santonian boundary.Changes in the ratio of total sulphur to total organic carbon (TS/TOC) reflect fluctuating oxygen contents of bottom waters throughout the late Turonian to Santonian. These are significantly parallelled by the alternation of dinocysts assemblages suggestive of enhanced upwelling and water column stratification respectively, probably reflecting changes in the mode of TOC accumulation. Accordingly, preservation largely prevails during the late Turonian interval and changes towards increased production within the Coniacian-Santonian. However, a final preservation-event is probably represented by the black-shale horizon closely spanning the Coniacian-Santonian boundary (top Dicarinella concavata foraminifera zone), which may reflect an episodic shutdown of a major upwelling cell. It is thus proposed, that the “culmination” of the OAE3 at Tarfaya may represent intermittent preservation of TOC within an otherwise high productivity environment related to a global cooling trend.  相似文献   
6.
In addition to previously analyzed sediments of Cenomanian to Santonian age in the Tarfaya Sondage No. 2 well, this study presents the results of a stratigraphically younger interval of Santonian to Early Campanian age in the adjacent well Tarfaya Sondage No. 1. This interval is part of the oceanic anoxic event 3 (OAE3), which occurred mainly in the Atlantic realm. Due to known high quality source rocks related to OAEs (i.e. Cenomanian–Turonian), the investigated sample section was tested for the quality, quantity and kind of organic matter (OM), describing also the depositional environment. The study was carried out by means of (i) elemental analysis (Corg, CaCO3, TS), (ii) Rock–Eval pyrolysis, (iii) vitrinite reflectance measurements, (iv) gas chromatography-flame ionization detection (GC-FID) and (v) GC-mass spectrometry (GC–MS). Total content of organic carbon (Corg), values for the hydrogen index (HI) (mainly in the range 500–700 mg/g Corg) and S2 values (10–40 mg/g rock), support the assumption of a high petroleum generation potential in these Upper Cretaceous sediments. TS/Corg ratios as well as pristane/phytane ratios indicate variable oxygen contents during sediment deposition, representing a typical depositional setting for the Late Cretaceous and are in good agreement with previously analyzed data in the Tarfaya Basin. Phyto- and zoo-plankton were identified as marine sourced. All of the investigated Early Campanian and Santonian samples are immature with some tendencies to early maturation. These results are based on vitrinite reflectance (0.3–0.4% VRr), Tmax values (409–425 °C), production indices (PI; S1/(S1 + S2)< 0.1) and n-alkane ratios (i.e. carbon preference index). As the deposition of these sediments is time related to OAE3, the depositional environment was characterized by oxygen-deficiency or even anoxic bottom water conditions. This situation was favored during the Cretaceous greenhouse climate by limited oxygen solubility in the then warmer ocean water. Furthermore, local factors related to nutrient supply and primary bioproductivity led to the exceptionally thick, Upper Cretaceous organic matter-rich sedimentary sequence of the Tarfaya Basin.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号