首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   5篇
  国内免费   17篇
测绘学   2篇
大气科学   7篇
地球物理   16篇
地质学   27篇
海洋学   6篇
天文学   2篇
综合类   1篇
自然地理   3篇
  2023年   2篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2016年   3篇
  2015年   2篇
  2014年   3篇
  2013年   1篇
  2012年   1篇
  2011年   3篇
  2010年   2篇
  2009年   5篇
  2008年   5篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   6篇
  1995年   2篇
  1994年   1篇
  1990年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
排序方式: 共有64条查询结果,搜索用时 0 毫秒
1.
The dynamics and thermodynamics of large ash flows   总被引:6,自引:6,他引:0  
 Ash flow deposits, containing up to 1000 km3 of material, have been produced by some of the largest volcanic eruptions known. Ash flows propagate several tens of kilometres from their source vents, produce extensive blankets of ash and are able to surmount topographic barriers hundreds of metres high. We present and test a new model of the motion of such flows as they propagate over a near horizontal surface from a collapsing fountain above a volcanic vent. The model predicts that for a given eruption rate, either a slow (10–100 m/s) and deep (1000–3000 m) subcritical flow or a fast (100–200 m/s) and shallow (500–1000 m) supercritical flow may develop. Subcritical ash flows propagate with a nearly constant volume flux, whereas supercritical flows entrain air and become progressively more voluminous. The run-out distance of such ash flows is controlled largely by the mass of air mixed into the collapsing fountain, the degree of fragmentation and the associated rate of loss of material into an underlying concentrated depositional system, and the mass eruption rate. However, in supercritical flows, the continued entrainment of air exerts a further important control on the flow evolution. Model predictions show that the run-out distance decreases with the mass of air entrained into the flow. Also, the mass of ash which may ascend from the flow into a buoyant coignimbrite cloud increases as more air is entrained into the flow. As a result, supercritical ash flows typically have shorter runout distances and more ash is elutriated into the associated coignimbrite eruption columns. We also show that one-dimensional, channellized ash flows typically propagate further than their radially spreading counterparts. As a Plinian eruption proceeds, the erupted mass flux often increases, leading to column collapse and the formation of pumiceous ash flows. Near the critical conditions for eruption column collapse, the flows are shed from high fountains which entrain large quantities of air per unit mass. Our model suggests that this will lead to relatively short ash flows with much of the erupted material being elutriated into the coignimbrite column. However, if the mass flux subseqently increases, then less air per unit mass is entrained into the collapsing fountain, and progressively larger flows, which propagate further from the vent, will develop. Our model is consistent with observations of a number of pyroclastic flow deposits, including the 1912 eruption of Katmai and the 1991 eruption of Pinatubo. The model suggests that many extensive flow sheets were emplaced from eruptions with mass fluxes of 109–1010 kg/s over periods of 103–105 s, and that some indicators of flow "mobility" may need to be reinterpreted. Furthermore, in accordance with observations, the model predicts that the coignimbrite eruption columns produced from such ash flows rose between 20 and 40 km. Received: 25 August 1995 / Accepted: 3 April 1996  相似文献   
2.
The capability of accurately predicting mineralogical brittleness index(BI)from basic suites of well logs is desir-able as it provides a useful indicator of the fracability of tight formations.Measuring mineralogical components in rocks is expensive and time consuming.However,the basic well log curves are not well correlated with BI so correlation-based,machine-learning methods are not able to derive highly accurate BI predictions using such data.A correlation-free,optimized data-matching algorithm is configured to predict BI on a supervised basis from well log and core data available from two published wells in the Lower Barnett Shale Formation(Texas).This transparent open box(TOB)algorithm matches data records by calculating the sum of squared errors be-tween their variables and selecting the best matches as those with the minimum squared errors.It then applies optimizers to adjust weights applied to individual variable errors to minimize the root mean square error(RMSE)between calculated and predicted(BI).The prediction accuracy achieved by TOB using just five well logs(Gr,pb,Ns,Rs,Dt)to predict BI is dependent on the density of data records sampled.At a sampling density of about one sample per 0.5 ft BI is predicted with RMSE~0.056 and R2~0.790.At a sampling density of about one sample per 0.1 ft BI is predicted with RMSE~0.008 and R2~0.995.Adding a stratigraphic height index as an additional(sixth)input variable method improves BI prediction accuracy to RMSE~0.003 and R2~0.999 for the two wells with only 1 record in 10,000 yielding a BI prediction error of>±0.1.The model has the potential to be applied in an unsupervised basis to predict BI from basic well log data in surrounding wells lacking mineralogical measure-ments but with similar lithofacies and burial histories.The method could also be extended to predict elastic rock properties in and seismic attributes from wells and seismic data to improve the precision of brittleness index and fracability mapping spatially.  相似文献   
3.
4.
Injection of carbon dioxide into coal seams is considered to be a potential method for its sequestration away from the atmosphere. However, water present in coals may retard injection: especially if carbon dioxide does not wet the coal as well as water. Thus contact angles in the coal-water-CO2 system were measured using CO2 bubbles in water/coal systems at 40 °C and pressures up to 15 MPa using five bituminous coals. At low pressures, in this CO2/water/coal system, receding contact angles for the coals ranged between 80° to 100°; except for one coal that had both high ash yield and low rank, with a contact angle of 115°, indicating that it was hydrophilic. With increasing pressure, the receding contact angles for the different coals decreased, indicating that they became more CO2-wetting. The relationship between contact angle and pressure was approximately linear. For low ash or high rank coals, at high pressure the contact angle was reduced to 30-50°, indicating the coals became strongly CO2-wetting; that is CO2 fluids will spontaneously penetrate these wet coals. In the case of the coal that was both high ash and hydrophilic, the contact angle did not drop to 90° even at the highest pressures used. These results suggest that CO2 will not be efficiently adsorbed by all wet coals equally well, even at high pressure. It was found that at high pressures (> 2 MPa) the rate of penetration of carbon dioxide into the coals increased rapidly with decreasing contact angle, independently of pressure. Injecting CO2 into wet coals that have both low rank and high ash will not trap CO2 as well as injecting it into high rank or low ash coals.  相似文献   
5.
A fluid inclusion study on metamorphic minerals of successive growth stages was performed on highly deformed paragneisses from the Nestos Shear Zone at Xanthi (Central Rhodope), in which microdiamonds provide unequivocal evidence for ultrahigh-pressure (UHP) metamorphism. The correlation of fluid inclusion density isochores and fluid inclusion reequilibration textures with geothermobarometric data and the relative chronology of micro- and macro-scale deformation stages allow a better understanding of both the fluid and metamorphic evolution along the PTd path. Textural evidence for subduction towards the NE is recorded by the orientation of intragranular NE-oriented fluid inclusion planes and the presence of single, annular fluid inclusion decrepitation textures. These textures occur within quartz “foam” structures enclosed in an earlier generation of garnets with prolate geometries and rarely within recrystallized matrix quartz, and reequilibrated both in composition and density during later stages of exhumation. No fluid inclusions pertaining to the postulated ultrahigh-pressure stage for microdiamond-bearing garnet–kyanite–gneisses have yet been found. The prolate shape of garnets developed during the earliest stages of exhumation that is recorded structurally by (L  S) tectonites, which subsequently accommodated progressive ductile SW shearing and folding up to shallow crustal levels. The majority of matrix kyanite and a later generation of garnet were formed during SW-directed shear under plane-strain conditions. Fluid inclusions entrapped in quartz during this stage of deformation underwent density loss and transformed to almost pure CO2 inclusions by preferential loss of H2O. Those inclusions armoured within garnet retained their primary 3-phase H2O–CO2 compositions. Reequilibration of fluid inclusions in quartz aggregates is most likely the result of recrystallization along with stress-induced, preferential H2O leakage along dislocations and planar lattice defects which results in the predominance of CO2 inclusions with supercritical densities. Carbonic fluid inclusions from adjacent kyanite–corundum-bearing pegmatoids and, the presence of shear-plane-parallel fluid inclusion planes within late quartz boudin structures consisting of pure CO2-fluid inclusions with negative crystal shapes, bear witness of the latest stage of deformation by NE-directed extensional shear.This study shows that the textures of early fluid inclusions that formed already during the prograde metamorphic path can be preserved and used to derive information about the kinematics of subduction that is difficult to obtain from other sources. The textures of early inclusions, together with later generations of unaltered primary and secondary inclusions in metamorphic index minerals that can be linked to specific deformation stages and even PT conditions, are a welcome supplement for the reconstruction of a rather detailed PTd path.  相似文献   
6.
超临界流体中MoO3与WO3溶解度实验探讨   总被引:1,自引:1,他引:1  
超临界地质流体以其独特的性质对金属成矿元素具有超强的萃取、层析和搬运能力,在热液矿床成矿机制研究中对揭示成矿物质的源、流和汇起着特殊和重要作用。本利用分析纯H2MoO3在高温下脱水制备了MoO3(白色斜方晶系),在冷封式高压釜中实验测定了417℃超临界条件下,MoO3在纯水中的溶解度分别为7.3(29MPa)、14.2(45MPa)、21.6(55MPa)、27.7(78MPa)、32.5(100MPa)、和34.2(150MPa)mmol/1,热液中钼的存在形式为H2M004。依据前人的实验方案,补充测定了WO3在4.0%NaCl水溶液中于450℃条件下的溶解度,其值分别为27.51(50MPa)和30.52(100MPa)mmol/l,结合前人研究结果发现,MoO3、WO3的溶解度在临界区域内具有超临界现象,在超临界条件下其溶解度与石英的超临界溶解度行为基本相似,表现为溶解度随体系温度和压力的升高而增大,这对揭示岩浆热液型和石英脉型钨、钼矿床的形成机制具有重要指导作用。  相似文献   
7.
提出1种将消频散变换应用到海底地声参数反演的方法。对单一水听器接收声压信号进行消频散处理后,根据群延时差建立代价函数,反演得到主要海底参数,最后根据贝叶斯统计理论给出了待反演地声参数的边缘后验概率密度。对单层波导进行仿真证明这种新方法的有效性。  相似文献   
8.
为探求绿洲棉区膜下滴灌条件下不同种植密度棉田蒸散发规律,运用大型称重式蒸渗仪对膜下滴灌棉田蒸散过程连续监测,结果表明:在不同种植密度条件下,棉花的日蒸散量曲线都表现为单峰曲线,不同生育时期一膜六行(30株/m2)种植的棉田蒸散量比一膜四行(20株/m2)大,花铃期棉田的蒸散发强度最大,一膜四行、一膜六行分别为4.76mm/d、5.94mm/d。同时,一膜六行种植的叶面积指数大于一膜四行种植,株高小于一膜四行种植。花铃期棉田的蒸散发量与日平均气温(p<0.01)和空气相对湿度(p<0.01)具有很好的相关性,与日平均风速和日平均水汽压的关系不大。  相似文献   
9.
鲜水河高温水热系统位于川西地热区, 是我国重要的水热型地热资源区和高温地热发电工程建设选区, 其深层超临界地热资源可以大幅提高热-功转换效率和地热发电能力, 具有极大的应用价值.超临界地热资源是地热学的全新研究方向, 研究深层超临界地热资源促进地热学拓宽研究领域, 具有重要的科学意义.本文利用地球物理资料、地热地质资料, 对鲜水河高温水热系统超临界水热流体构造条件、有利赋存部位、热结构与热状态开展计算分析.结果表明: 鲜水河断裂带浅源小震群与深层超压热流体层相关, 热泉群串珠状负重力异常圈闭之下超厚沉积地层是赋存深层超临界地热流体储层的有利构造部位; 康定中谷—二道桥—榆林宫热水区的水源补给、热源补给、水热循环通道等地热地质条件优良, 其下方存在酸性岩浆活动, 是形成高温水热系统浅层热储、深层超临界热液区的重要热源条件.我们认为: 鲜水河断裂带是深部热流体上升至浅表产生强烈水热活动的通道, 沿此通道, 在160~250 ℃温度区间, 是鲜水河水热系统地热储层的赋存区域; 在350~400 ℃温度区间, 是深层超临界流体(H2O、CO2)的赋存区域; 随温泉水大量溢出的高浓度CO2地热气体, 伴随出现pH值略小于7的弱酸性热水, 其下方是形成深层超临界地热资源的有利区域.  相似文献   
10.
介质密度反演偏导矩阵的精确计算方法   总被引:1,自引:1,他引:1       下载免费PDF全文
实现反演偏导矩阵的计算是基于导数最优化反演方法的关键,然而目前的地震反演几乎都是基于Zoeppritz方程近似实现的,使计算精度和适应范围受到限制.本文利用Zoeppritz方程建立了反射系数对地层介质密度比偏导方程,导出了Zoeppritz方程矩阵元对介质密度比的导数.通过求解偏导方程获得了反射系数对介质密度比偏导数的精确计算(考虑了速度中含介质密度的问题).利用数值算例分析了反射系数对介质密度比偏导数的变化特点.本文采用直接解法求解偏导矩阵方程组,获得了快的计算速度和高的计算精度,为实现地层介质密度反演(包括大角度反演)提供了偏导矩阵的计算方法.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号