首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6233篇
  免费   569篇
  国内免费   906篇
测绘学   694篇
大气科学   561篇
地球物理   1110篇
地质学   1775篇
海洋学   471篇
天文学   1568篇
综合类   349篇
自然地理   1180篇
  2024年   72篇
  2023年   159篇
  2022年   299篇
  2021年   292篇
  2020年   283篇
  2019年   277篇
  2018年   180篇
  2017年   209篇
  2016年   189篇
  2015年   188篇
  2014年   205篇
  2013年   299篇
  2012年   265篇
  2011年   214篇
  2010年   198篇
  2009年   342篇
  2008年   387篇
  2007年   411篇
  2006年   393篇
  2005年   324篇
  2004年   296篇
  2003年   281篇
  2002年   246篇
  2001年   240篇
  2000年   206篇
  1999年   230篇
  1998年   201篇
  1997年   125篇
  1996年   102篇
  1995年   101篇
  1994年   81篇
  1993年   83篇
  1992年   66篇
  1991年   46篇
  1990年   49篇
  1989年   42篇
  1988年   35篇
  1987年   31篇
  1986年   15篇
  1985年   11篇
  1984年   6篇
  1983年   4篇
  1982年   4篇
  1981年   4篇
  1980年   2篇
  1979年   2篇
  1977年   4篇
  1976年   3篇
  1972年   1篇
  1954年   3篇
排序方式: 共有7708条查询结果,搜索用时 15 毫秒
1.
A constitutive model that captures the material behavior under a wide range of loading conditions is essential for simulating complex boundary value problems. In recent years, some attempts have been made to develop constitutive models for finite element analysis using self‐learning simulation (SelfSim). Self‐learning simulation is an inverse analysis technique that extracts material behavior from some boundary measurements (eg, load and displacement). In the heart of the self‐learning framework is a neural network which is used to train and develop a constitutive model that represents the material behavior. It is generally known that neural networks suffer from a number of drawbacks. This paper utilizes evolutionary polynomial regression (EPR) in the framework of SelfSim within an automation process which is coded in Matlab environment. EPR is a hybrid data mining technique that uses a combination of a genetic algorithm and the least square method to search for mathematical equations to represent the behavior of a system. Two strategies of material modeling have been considered in the SelfSim‐based finite element analysis. These include a total stress‐strain strategy applied to analysis of a truss structure using synthetic measurement data and an incremental stress‐strain strategy applied to simulation of triaxial tests using experimental data. The results show that effective and accurate constitutive models can be developed from the proposed EPR‐based self‐learning finite element method. The EPR‐based self‐learning FEM can provide accurate predictions to engineering problems. The main advantages of using EPR over neural network are highlighted.  相似文献   
2.
ABSTRACT

High performance computing is required for fast geoprocessing of geospatial big data. Using spatial domains to represent computational intensity (CIT) and domain decomposition for parallelism are prominent strategies when designing parallel geoprocessing applications. Traditional domain decomposition is limited in evaluating the computational intensity, which often results in load imbalance and poor parallel performance. From the data science perspective, machine learning from Artificial Intelligence (AI) shows promise for better CIT evaluation. This paper proposes a machine learning approach for predicting computational intensity, followed by an optimized domain decomposition, which divides the spatial domain into balanced subdivisions based on the predicted CIT to achieve better parallel performance. The approach provides a reference framework on how various machine learning methods including feature selection and model training can be used in predicting computational intensity and optimizing parallel geoprocessing against different cases. Some comparative experiments between the approach and traditional methods were performed using the two cases, DEM generation from point clouds and spatial intersection on vector data. The results not only demonstrate the advantage of the approach, but also provide hints on how traditional GIS computation can be improved by the AI machine learning.  相似文献   
3.
It is shown in this paper how to build a canonical transformation of variables, so that the eccentric anomaly becomes the new independent variable. In the case of eccentric elliptical orbits it changes the equations of motion so, that they can be integrated analytically to any order of approximation comparatively easy.  相似文献   
4.
5.
6.
7.
8.
9.
We present warm dark matter (WDM) as a possible solution to the missing satellites and angular momentum problem in galaxy formation and introduce improved initial conditions for numerical simulations of WDM models, which avoid the formation of unphysical haloes found in earlier simulations. There is a hint, that because of that the mass function of satellite haloes has been overestimated so far, pointing to higher values for the WDM particle mass. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号