首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
地球物理   8篇
地质学   7篇
海洋学   1篇
自然地理   6篇
  2021年   1篇
  2019年   1篇
  2014年   1篇
  2013年   1篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2005年   3篇
  2004年   2篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1996年   1篇
  1995年   2篇
排序方式: 共有22条查询结果,搜索用时 31 毫秒
1.
青藏高原沼泽合理利用与生态环境保育   总被引:4,自引:0,他引:4  
赵魁义 《湿地科学》2003,1(2):92-97
青藏高原有沼泽约491.3万hm2,是世界上最高的湿地。通过概要介绍高原沼泽湿地基本类型及其分布,重点阐述沼泽湿地利用、环境变化现状与存在的问题,为了保护高原生态环境,并持续利用湿地资源,提出了初步的看法和建议。  相似文献   
2.
The mid to late‐Holocene climates of most of Scotland have been reconstructed from seven peat bogs located across north–south and east–west geographical and climatological gradients. The main techniques used for palaeoclimatic reconstruction were plant macrofossil, colorimetric humification, and testate amoebae analyses, which were supported by a radiocarbon‐based chronology, aided by markers such as tephra isochrons and recent rises in pine pollen and in spheroidal carbonaceous particles (SCPs). Field stratigraphy was undertaken at each site in order to show that the changes detected within the peat profiles were replicable. Proxy climate records were reconstructed using detrended correspondence analysis (DCA) of the plant macrofossil data and a mean water table depth transfer function on the testate amoebae data. These reconstructions, coupled with the humification data, were standardised for each site and used to produce a composite record of bog surface wetness (BSW) from each site. The results show coherent wet and dry phases over the last 5000 years and suggest regional differences in climate across Scotland, specifically between northern and southern Scotland. Distinct climatic cycles are identified, all of which record a millennial‐scale periodicity which can be correlated with previously identified marine and ice core Holocene cycles. The key role of the macrofossil remains of Sphagnum imbricatum, a taxon now extinct on many sites, is discussed in relation to the identified climatic shifts. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
3.
Carbon isotopic composition of Sphagnum macrofossils can potentially be used as a palaeohydrological tool for peat‐based climatic studies since a relationship between Sphagnum δ13C values and peatland surface moisture has been presented in previous studies. In order to verify this hypothesis, modern Sphagnum δ13C values were measured along a moisture (microtopographic) gradient in two boreal peat bogs. Isotopic measurements were performed on bulk material of S. fuscum, S. magellanicum, S. capillifolium and S. pulchrum. Isotopic variations found within and between Sphagnum species along the microtopographic gradient were compared using analysis of variance. A significant positive correlation (P < 0.0001) was found between Sphagnum δ13C values and their position along the surface moisture gradient. Results show that 13C‐depleted values are related to low water table depths (WTD), while 13C‐enriched values correspond to a water table that is close to the peat surface. Although the mechanisms underlying carbon fractionation processes in mosses are not well understood, we demonstrate that water resistance to CO2 diffusion is an important fractionation process that is observed in bulk Sphagnum δ13C measurements, since drier and wetter samples exhibit consistent and very different isotopic signatures. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
4.
5.
A wide range of palaeoenvironmental evidence from the Holocene has suggested periodicities in the Earth's climate of 10s to 1000s of years. Identifying these millennial‐, century‐ and decadal periodicities, and their impacts, is critical in developing a fuller understanding of natural climate variability. Any solar‐induced climatic change needs to be distinguished from other causes of natural climate variability and from short‐term catastrophic events induced either by external or internal processes. Such events might themselves generate a periodicity, or in combination with other forcing factors they may contribute towards a periodicity (and so spuriously imply a universal and continuing periodicity in the climate record), or they may resonate with a solar‐induced periodicity. Here, evidence from peat records for periodicity in climate change over the mid to late Holocene is reviewed and this is followed by a test of the replicability of claimed periodicities using blanket peat data covering the past 2000 yr from four sites in the British Isles. Results suggest that the mires studied do go through phases of being responsive to periodic forcing factors, with ca. 200, ca. 80 and 60–50 yr wavelengths reflected in some data sets. However, the patterns shown are not consistent. This could be the result of local conditions at individual mires (human impact, sensitivity and vegetation succession) or of changes in the strength or nature of global forcing factors. Assessing a solar–mire link remains difficult because the century‐scale variations of the Sun show different intervals between solar minima, the durations of which are themselves unequal, and because the proxy‐climate data‐sets from peat profiles may themselves not be dated with sufficient precision and/or accuracy. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
6.
Peatlands are globally important long-term sinks of carbon, however there is concern that enhanced peat decomposition and moss moisture stress due to climate change mediated drought will reduce moss productivity making these ecosystems vulnerable to carbon loss and associated long-term degradation. Peatlands are resilient to summer drought moss stress because of negative ecohydrological feedbacks that generally maintain a wet peat surface, but where feedbacks may be contingent on peat depth. We tested this ‘survival of the deepest’ hypothesis by examining water table (WT) position, near-surface moisture content, and soil water tension in peatlands that differ in size, peat depth, and catchment area during a summer drought. All shallow sites (<40 cm depth) lost their WT (i.e., the groundwater well was dry) for considerable time during the drought period. Near-surface soil water tension increased dramatically at shallow sites following WT loss, increasing ~5–7.5× greater at shallow sites compared to deep sites (≥40 cm depth). During a mid-summer drought intensive field survey, we found that 60–67% of plots at shallow sites exceeded a 100 mb tension threshold used to infer moss water stress. Unlike the shallow sites, tension typically did not exceed this 100 mb threshold at the deep sites. Using species dependent water content – chlorophyll fluorescence thresholds and relations between volumetric water content and WT depth, Monte Carlo simulations suggest that moss had nearly twice the likelihood of being stressed at shallow sites (0.38 ± 0.24) compared to deep sites (0.22 ± 0.18). This study provides evidence that mosses in shallow peatland may be particularly vulnerable to warmer and drier climates in the future, but where species composition may play an important role. We argue that a critical ‘threshold’ peat depth specific for different hydrogeological and hydroclimatic regions can be used to assess what peatlands are especially vulnerable to climate change mediated drought.  相似文献   
7.
Groundwater heads and chemical composition were measured at approximately two week intervals during the summer of 1993 along a 1 km transect across the Insh Marshes floodplain mire in Inverness-shire, Scotland. Groundwater heads were generally higher near the valley side slope, with lower pH values and greater dissolved organic carbon, A1 and C1 concentrations. In the centre of the transect, upward groundwater heads were identified and pH, conductivity and concentrations of base cations were much greater. Near the River Spey, pH and base cation concentrations decreased and A1 and C1 concentrations increased. Deep groundwater followed a similar spatial trend but was generally more base-rich than shallow groundwater. These variations reflect the influence of three major water sources with different chemical signatures. Runoff from the valley side slope increased dissolved organic carbon and A1 in the shallow groundwater, the upward flow of groundwater increased the pH and Ca concentration and inundation near the river decreased the base status and increased C1 and A1.  相似文献   
8.
A water budget was established for the open, undisturbed bog Stormossen, central Sweden, for the growing seasons of 1996 and 1997 as a part of the NOPEX project. The water budget was complemented with data on the spatial variation of groundwater levels and water contents in different microrelief elements (ridge, hollow and ridge margin). The seasonal (24 May to 4 October) rainfall, evaporation and runoff were 200, 256, and 43 mm in 1996, respectively, and 310, 286 and 74 mm in 1997, giving negative budgets of ?99 mm in 1996 and ?50 mm in 1997. Approximately 60% of the total budget was caused by storage changes in the upper 40 cm of the bog and 40% by swelling/shrinking in the layers below. This ‘mire breathing’ must be incorporated in future models of mire‐water dynamics. The water content varied diversely among the different microrelief elements, much depending on the properties of moss and peat together with distance to water table. There also was a strong hysteresis in the relationships between groundwater level and measured volumetric water content, depending partly on pore‐throat effects and partly on swelling/shrinking of the peat matrix. A seasonal variation of volumetric water content in a layer beneath water table was found to be larger than what could be justified by compression alone. We think that probable causes could be methane gas expansion together with temperature effects. The main conclusions of this study were: (i) water‐transport and storage characteristics are distinctly different among hummocks, ridges and hollows, (ii) mire wetness cannot be deduced from groundwater levels only, and (iii) an important part of the total water storage was caused by swelling/shrinking of the peat, not by changes in unsaturated water content. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
9.
A ca. 1400-yr record from a raised bog in Isla Grande, Tierra del Fuego, Argentina, registers climate fluctuations, including a Medieval Warm Period, although evidence for the ‘Little Ice Age’ is less clear. Changes in temperature and/or precipitation were inferred from plant macrofossils, pollen, fungal spores, testate amebae, and peat humification. The chronology was established using a 14C wiggle-matching technique that provides improved age control for at least part of the record compared to other sites. These new data are presented and compared with other lines of evidence from the Southern and Northern Hemispheres. A period of low local water tables occurred in the bog between A.D. 960-1020, which may correspond to the Medieval Warm Period date range of A.D. 950-1045 generated from Northern Hemisphere tree-ring data. A period of cooler and/or wetter conditions was detected between ca. A.D. 1030 and 1100 and a later period of cooler/wetter conditions estimated at ca. cal A.D. 1800-1930, which may correspond to a cooling episode inferred from Law Dome, Antarctica.  相似文献   
10.
两种泥炭藓种群年龄结构与生长特征的对比分析   总被引:1,自引:0,他引:1  
付彬  卜兆君  王升忠 《湿地科学》2005,3(3):200-204
2004年8月中旬,在长白山西侧龙岗山脉中部的哈尼泥炭沼泽,应用“固有年际标记”方法,研究了中位泥炭藓(Sphagnum.magellanicum)与疣壁泥炭藓(Sphagnum papillosum)两种群分株数量和生物量的年龄结构、生物量和高度生长规律。结果表明:中位泥炭藓种群共分为4个龄级,分株的数量和生物量的年龄结构均呈稳定型;疣壁泥炭藓种群亦分4个龄级,但分株的年龄结构呈衰退型。两种泥炭藓种群分株每年生长的高度大体上相同,分株高度与龄级间均呈较明显的单调线性关系(p<0.01),两种群虽未出现异速生长现象,但老龄植株的高度、生物量变异程度均小于幼龄株。这与老龄级分株对水、养分及光资源的吸收利用的权衡能力较强有一定关系。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号