首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
地质学   4篇
  2017年   1篇
  2013年   2篇
  2004年   1篇
排序方式: 共有4条查询结果,搜索用时 78 毫秒
1
1.
This study combines U–Pb age and Lu–Hf isotope data for magmatic and detrital zircons, with whole-rock geochemistry of the Browns Range Metamorphics (BRM), Western Australia. The BRM are medium- to coarse-grained metasandstones that consist of angular to sub-rounded detrital quartz and feldspars with minor granitic lithic fragments. The sequence has undergone partial to extensive quartz–muscovite alteration and rare-earth-element mineralisation and has been intruded by mafic/ultramafic, syenitic and pegmatitic intrusive rock units. Uranium–Pb and Lu–Hf isotopic data on detrital zircons from the metasandstones and intruding granitic rocks yield a well-defined age of ca 3.2 to ca 3.0 Ga for all samples, with relatively radiogenic ?Hf values (?Hf = –1.7 to 5.1) indicating derivation from Mesoarchean granite basement of juvenile origin. This is consistent with geochemical and petrological data that support deposition from a granitic source in a continental rift basin setting. The timing of sediment deposition is constrained between the ca 3.0 Ga age of the source rocks and ca 2.5 Ga age of the granitic intrusive bodies that cross-cut the metasedimentary rocks. The ca 2.5 Ga zircons from the intrusive rocks have ?Hf model ages of ca 3.4 to ca 3.1 Ga, which is consistent with formation via partial melting of the BRM, or the Mesoarchean granite basement. Zircons of the Gardiner Sandstone that unconformably overlies the BRM return detrital ages of ca 2.6 to ca 1.8 Ga with no trace of ca 3.1 Ga zircons, which discounts a significant contribution from the underlying BRM. The Mesoarchean age and isotopic signatures of the BRM zircons are shared by some zircon records from the Pine Creek Orogen, and the Pilbara, Yilgarn and Gawler cratons. Collectively, these records indicate that juvenile Mesoarchean crust is a more significant component of Australian cratons than is currently recognised. This work also further demonstrates that detrital minerals in Paleoproterozoic/Archean sedimentary rocks are archives to study the early crustal record of Earth.  相似文献   
2.
Understanding the relationships of inclusion trail geometries in porphyroblasts relative to matrix foliations is vital for unravelling complex deformation and metamorphic histories in highly tectonized terranes and the approach used to thin sectioning rocks is critically important for this. Two approaches have been used by structural and metamorphic geologists. One is based on fabric orientations with sections cut perpendicular to the foliation both parallel (P) and normal (N) to the lineation, whereas the other uses geographic orientations and a series of vertical thin sections. Studies using P and N sections reveal a simple history in comparison with studies using multiple-vertical thin sections. The reason for this is that inclusion trails exiting the porphyroblasts into the strain shadows in P and N sections commonly appear continuous with the matrix foliation whereas multiple vertical thin sections with different strikes reveal that they are actually truncated. Such truncations or textural unconformities are apparent from microstructures, textural relationships, compositional variations and FIA (foliation intersection axis) trends. A succession of four FIA trends from ENE–WSW, E–W, N–S to NE–SW in the Robertson River Metamorphics, northern Queensland, Australia, suggests that these truncations were formed because of the overprint of successive generations of orthogonal foliations preserved within porphyroblasts by growth during multiple deformation events. At least four periods of orogenesis involving multiple phases of porphyroblast growth can be delineated instead of just the one previously suggested from an N and P section approach.  相似文献   
3.

We present new data on the field geology and late thermal evolution of the Redbank Thrust system in the Arunta Block of central Australia. Geochronological and field data from the Speares Metamorphics are also used to relate the thermal evolution of the Redbank Thrust system to the structural evolution of the region. We show that several stages in the evolution might be discerned. An originally sedimentary sequence was intruded by mafic intrusions and then deformed during partial melting to form the principal foliation observed in the region (D1). This sequence was then folded during D2 into upright folds with north‐ to northeast‐plunging fold axes. These events are likely to correlate with the Strangways and/or Argilke and Chewings Orogenies known from previous studies. Subsequently, the Redbank Thrust was initiated during D3. This event is recognised by deflection of the host rocks into the shear zone and might therefore have been associated with a component of strike‐slip motion. It occurred probably at or before 1500–1400 Ma. Subsequent north‐over‐south thrust motion in the Redbank Thrust formed the intense mylonitic fabric and folded the mylonitic fabric during D4 into asymmetric folds with shallow fold axes. New 40Ar/39Ar K‐feldspar ages from three samples collected from variably deformed branches of the Redbank Thrust and undeformed rocks in the Speares Metamorphics suggest that most parts of the Redbank Thrust system cooled relatively slowly after metamorphism and deformation in the Mesoproterozoic so that the D4 thrusting might have been very long‐lived. Minimum ages of the K‐feldspar age spectra show that the entire region cooled below 200°C by approximately 300 Ma. Apatite fission track ages from nine samples show that cooling through the apatite partial annealing zone occurred during Cretaceous time (ca 150–70 Ma) and modelled cooling histories are consistent with the cooling rates obtained from the K‐feldspar data. They indicate that final exhumation of the Redbank Thrust system occurred probably in response to erosion, possibly driven by rifting around the margins of Australia.  相似文献   
4.
Palaeoproterozoic basaltic rocks in the Halls Creek Orogen form part of two stratigraphic sequences on either side of a major structure, the Angelo‐Halls Creek‐Osmond Fault System. The two sequences have contrasting geological histories and probably formed in different tectonostratigraphic terranes. To the east, basalts of the Biscay Formation, which are part of the Halls Creek Group, were erupted at ca 1880 Ma and deformed and metamorphosed first at low grade between ca 1845 and ca 1820 Ma. To the west, basalts of the Tickalara Metamorphics were deposited after 1865 Ma, and were metamorphosed at medium to high grade and intruded by tonalite and leucogranite sheets at 1850 to 1845 Ma. Two groups of metabasalts are identified in the Biscay Formation. Group 1 samples have compositions similar to enriched (E‐)MORB. Group 2 samples have lower TiO2, P2O5, Cr, Y, Nb and Zr contents, and trace‐element ratios (e.g. Ti/V and Zr/Nb), similar to low‐TiO2 continental flood basalts. Metabasalts from the Tickalara Metamorphics consist of depleted and enriched types. The depleted samples have high field strength element (HFSE) and rare‐earth element (REE) abundances similar to oceanic island arc/backarc basin tholeiites. The enriched samples have compositions similar to E‐MORB, and are similarto group 1 samples from the Biscay Formation. Basalts of the Biscay Formation were erupted on a passive continental margin, whereas those of the Tickalara Metamorphics formed in an oceanic island arc/backarc basin or ensialic marginal basin, the two terranes being brought together by ca 1820 Ma. This is consistent with the evolution of the Halls Creek Orogen during the Palaeoproterozoic by plate‐tectonic processes similar to those operating in the Phanerozoic.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号