首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   565篇
  免费   79篇
  国内免费   257篇
测绘学   2篇
大气科学   2篇
地球物理   39篇
地质学   747篇
海洋学   32篇
天文学   7篇
综合类   25篇
自然地理   47篇
  2024年   6篇
  2023年   17篇
  2022年   10篇
  2021年   25篇
  2020年   23篇
  2019年   35篇
  2018年   22篇
  2017年   32篇
  2016年   25篇
  2015年   29篇
  2014年   47篇
  2013年   49篇
  2012年   33篇
  2011年   46篇
  2010年   30篇
  2009年   33篇
  2008年   33篇
  2007年   36篇
  2006年   26篇
  2005年   26篇
  2004年   22篇
  2003年   28篇
  2002年   21篇
  2001年   33篇
  2000年   26篇
  1999年   19篇
  1998年   19篇
  1997年   16篇
  1996年   16篇
  1995年   19篇
  1994年   11篇
  1993年   16篇
  1992年   14篇
  1991年   17篇
  1990年   5篇
  1989年   5篇
  1988年   6篇
  1987年   11篇
  1986年   5篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1972年   3篇
  1971年   3篇
排序方式: 共有901条查询结果,搜索用时 15 毫秒
1.
The Granny Smith (37 t Au production) and Wallaby deposits (38 t out of a 180 t Au resource) are located northeast of Kalgoorlie, in 2.7 Ga greenstones of the Eastern Goldfields Province, the youngest orogenic belt of the Yilgarn craton, Western Australia. At Granny Smith, a zoned monzodiorite–granodiorite stock, dated by a concordant titanite–zircon U–Pb age of 2,665 ± 3 Ma, cuts across east-dipping thrust faults. The stock is fractured but not displaced and sets a minimum age for large-scale (1 km) thrust faulting (D2), regional folding (D1), and dynamothermal metamorphism in the mining district. The local gold–pyrite mineralization, controlled by fractured fault zones, is younger than 2,665 ± 3 Ma. In augite–hornblende monzodiorite, alteration progressed from a hematite-stained alkali feldspar–quartz–calcite assemblage and quartz–molybdenite–pyrite veins to a late reduced sericite–dolomite–albite assemblage. Gold-related monazite and xenotime define a U–Pb age of 2,660 ± 5 Ma, and molybdenite from veins a Re–Os isochron age of 2,661 ± 6 Ma, indicating that mineralization took place shortly after the emplacement of the main stock, perhaps coincident with the intrusion of late alkali granite dikes. At Wallaby, a NE-trending swarm of porphyry dikes comprising augite monzonite, monzodiorite, and minor kersantite intrudes folded and thrust-faulted molasse. The conglomerate and the dikes are overprinted by barren (<0.01 g/t Au) anhydrite-bearing epidote–actinolite–calcite skarn, forming a 600-m-wide and >1,600-m-long replacement pipe, which is intruded by a younger ring dike of syenite porphyry pervasively altered to muscovite + calcite + pyrite. Skarn and syenite are cut by pink biotite–calcite veins, containing magnetite + pyrite and subeconomic gold–silver mineralization (Au/Ag = 0.2). The veins are associated with red biotite–sericite–calcite–albite alteration in adjacent monzonite dikes. Structural relations and the concordant titanite U–Pb age of the skarn constrain intrusion-related mineralization to 2,662 ± 3 Ma. The main-stage gold–pyrite ore (Au/Ag >10) forms hematite-stained sericite–dolomite–albite lodes in stacked D2 reverse faults, which offset skarn, syenite, and the biotite–calcite veins by up to 25 m. The molybdenite Re–Os age (2,661 ± 10 Ma) of the ore suggests a genetic link to intrusive activity but is in apparent conflict with a monazite–xenotime U–Pb age (2,651 ± 6 Ma), which differs from that of the skarn at the 95% confidence level. The time relationships at both gold deposits are inconsistent with orogenic models invoking a principal role for metamorphic fluids released during the main phase of compression in the fold belt. Instead, mineralization is related in space and time to late-orogenic, magnetite-series, high-Mg monzodiorite–syenite intrusions of mantle origin, characterized by Mg/(Mg + FeTOTAL) = 0.31–0.57, high Cr (34–96 ppm), Ni (22–63 ppm), Ba (1,056–2,321 ppm), Sr (1,268–2,457 ppm), Th (15–36 ppm), and rare earth elements (total REE: 343–523 ppm). At Wallaby, shared Ca–K–CO2 metasomatism and Th-REE enrichment (in allanite) link Au–Ag mineralization in biotite–calcite veins to the formation of the giant epidote skarn, implicating a Th + REE-rich syenite pluton at depth as the source of the oxidized hydrothermal fluid. At Granny Smith, lead isotope data and the Rb–Th–U signature of early hematite-bearing wall-rock alteration point to fluid released by the source pluton of the differentiated alkali granite dikes.  相似文献   
2.
南海尖峰海山多金属结壳地球化学   总被引:4,自引:5,他引:4  
南海尖峰海山多金属结壳富含30多种元素,其锰铁矿物主要由钡镁锰矿,δ-MnO_2和FeOOH·xH_2O组成。与其它海区的结壳相比,尖峰海山结壳富含Cu、Ni、Ba、Zn、Pb等元素,而Co、Ti、稀土元素(REE)、Sr等元素相对较贫。研究表明,HREE亏损,具明显的Ce正异常,较明显的Tb正异常和Yb负异常。这是氧化弱碱性海洋环境所致。结壳是水成作用的产物,它的形成受南海独特的古海洋环境所控制,海底火山热液作用,可能也是影响因素之一。  相似文献   
3.
通过电镜、电子探针和X射线等项分析,对东海沉积物中的有孔虫、腹足类、双壳类、苔藓、珊瑚、海胆等骨屑进行了矿物学研究,确定了矿物成分与生物属种的关系,并基于有孔虫壳体化学成分将壳体分为均质壳和异质壳,生物碳酸盐中镁主要富集在方解石及镁方解石中,锶在方解石和镁方解石中的分配系数(D)相似,为0.11—0.14;在文石质骨屑中D=1.09-1.20。碳氧同位素组成与生物属种有明显关系。据一些有孔虫壳体氧同位素偏差值计算的水温来看,本次测定的有孔虫属种的骨屑不能作为理想的骨屑温度计。  相似文献   
4.
富宁洞哈钛铁矿   总被引:2,自引:1,他引:1  
印支期暗色、致密块状辉绿岩中含较高的含铁矿物,地磁异常较高,为矿源层。辉绿岩与灰岩接触形成矽卡岩带为有利的含矿带。矿体沿大断裂或次级断层形成的通道侵入穹窿状构造中,于二叠系砂岩、板岩隔层的下部形成工业钛铁矿体。  相似文献   
5.
安徽池州铜山铜矿深部找矿实践与启示   总被引:4,自引:0,他引:4  
铜山铜矿资源储量日益枯竭。危机矿山接替资源勘查中,采用地质、物探综合手段圈定异常区,经深部钻探验证,取得突破。  相似文献   
6.
在总结石板沟金矿床矿化地质特征的基础上,通过对矿石氢氧同位素测试和矿石微量元素相关分析,认为成矿热液主要来源于变质水,矿床成矿环境应属低温环境,矿床成因类型属受构造剪切带控制的低温变质热液蚀变型金矿床。  相似文献   
7.
The hitherto longest found lake sediment sequence on Byers Peninsula, Livingston Island, South Shetland Islands, was analysed with respect to lithology, chronology, diatoms, Pediastrum, pollen and spores, mosses, mineralogy, and sediment chemistry. During the ca. 5000 year long development the sediments were influenced by frequent tephra fall-outs. This volcanic impact played a major role in the lake's history during two periods, 4700–4600 and 2800–2500 BP, but was of importance during the lake's entire history with considerable influence on many of the palaeoenvironmentally significant indicators. The large and complex data set was analysed and zonated with different types of multivariate analysis. This resulted in a subdivision of the sequence into 8 time periods and 21 variables. Redundancy analysis (RDA) of this data set, both without and with the tephra periods, and with 4–6 of the variables as explanatory environmental variables, reveal that climatic/environmental signals are detectable. The palaeoclimatic picture that emerged out of the tephra noise suggests that the first 100 years were characterized by mild, humid conditions. This was followed by a less mild and humid climate until ca. 4000 BP when a gradual warming seems to have started, coupled with increased humidity. These mild and humid conditions seem to have reached an optimum slightly after 3000 BP. At ca. 2500 BP a distinct climatic deterioration occurred with colder and drier conditions and long seasons with ice cover. This arid, cold phase probably reached its optimum conditions at ca. 1500 BP, when slightly warmer conditions might have prevailed for a while. Except for the modern sample with rather mild climate, the last 1400 years seem to have been fairly arid and cold, and the effects of the frequent volcanic activity during this period is only vaguely seen in the records.  相似文献   
8.
Fluorite deposits are widespread in northern Mexico and those deposits have traditionally been categorized as exclusively hydrothermal–magmatic in origin. Recently, two different fluorite-bearing type models have been proposed for the Northern Mexican deposits: (1) MVT-like deposits formed from basinal brines mobilized during the Laramide Orogeny (La Encantada deposit, Gonzalez-Partida et al., [Gonzalez-Partida, E., Carrillo-Chavez, A., Grimmer, J.O.W., Pironon, J., 2002. Petroleum-rich fluid inclusions in fluorite, Purisima mine, Coahuila, Mexico. International Geological Review 44 (8), 751–763.]; Tritlla et al., [Tritlla, J., Gonzalez-Partida, E., Levresse, G., Banks, D., Pironon, J., 2004. Fluorite deposits at Encantada-Buenavista, Mexico: products of Mississippi Valley type processes — a reply. Ore Geology Reviews 25, 329–332.]); and (2) fluorite-bearing skarns in close contact with rhyolite intrusives (Levinson, [Levinson, A.A., 1962. Beryllium–fluorine mineralization at Aguachile Mountain, Coahuila, Mexico. American Mineralogist 47, 67–75.]). The El Pilote fluorite deposit falls into the second category, and is the only known example of a magmatic-related fluorite deposit in the area. The fluorite trace-element patterns from both the El Pilote skarn and La Encantada MVT deposits display comparable and very low relative abundances as well as comparable chondrite-normalized REE patterns; this would suggest that the skarn F-source comes from the remobilization of a MVT fluorite manto.  相似文献   
9.
Many studies have shown systematic correlations between the composition of plutons worldwide and the metal content of associated skarns. This is the first report of similar correlations between the composition of Çelebi granitoid and skarns of the Çelebi district in Central Anatolia, Turkey. The Çelebi district is well known for its polymetallic Fe–W and Cu vein ores. These are hosted by calcic skarn zones. Both exoskarns (pyroxene–garnet) and endoskarns (epidote–pyroxene) occur in the district formed mainly along the granitoid contacts and along the fractures within the marble. Based on mineralogy, petrology and geochemistry, two different igneous rocks were recognized in the Çelebi granitoid, referred to as leucocratic (felsic) and mesocratic (intermediate) Çelebi granitoid. The leucocratic Çelebi occurs as dominant rock type, and is classified as granite. The mesocratic Çelebi is not widespread and is classified as adamellite, tonalite, quartz monzonite and quartz monzodiorite. The mesocratic Çelebi has I-type characteristics, and have subalkaline, calc-alkaline and metaluminous characteristics like most worldwide skarn granitoids.A post-collisional tectonic setting is proposed on the basis of field evidence, the relative timing of intrusions with respect to metamorphic and obducted ophiolitic rocks and trace element geochemistry. The high abundance of La and Ce and the enrichment of V in mafic components suggest that Çelebi granitoids are formed by partial melting of mantle rocks, but have been contaminated by interaction with continental crust involving possible magma mixing processes (i.e. mixing of coexisting felsic and mafic magmas). In the district, the mesocratic type and mafic microgranular enclaves (MME) mainly within leucocratic type represent a mafic underplating magma that was mixed with and/or injected into felsic magma of the leucocratic type.The present study shows that Fe mineralization is associated with mesocratic Çelebi type, whereas W mineralization is associated with leucocratic type. Mesocratic Çelebi granitoid is significantly different from the worldwide average of plutons associated with Fe skarns. In particular, MgO vs. SiO2, FeOt+CaO+Na2O/K2O vs. SiO2, Fe2O3/Fe2O3+FeO vs. SiO2 and V vs. Ni vary from typical values (are lower than values typical for plutons associated with Fe skarns) for plutons associated with Fe skarns. Instead, it resembles the geochemical characteristics of plutons associated with worldwide Cu and possibly Au skarns. This suggests new exploration possibilities for copper and gold in the Çelebi district.  相似文献   
10.
T-matrix approach to shale acoustics   总被引:2,自引:0,他引:2  
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号