首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   1篇
测绘学   1篇
地球物理   1篇
地质学   1篇
  2020年   1篇
  2016年   1篇
  2011年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Digital gazetteers play a key role in modern information systems and infrastructures. They facilitate (spatial) search, deliver contextual information to recommended systems, enrich textual information with geographical references, and provide stable identifiers to interlink actors, events, and objects by the places they interact with. Hence, it is unsurprising that gazetteers, such as GeoNames, are among the most densely interlinked hubs on the Web of Linked Data. A wide variety of digital gazetteers have been developed over the years to serve different communities and needs. These gazetteers differ in their overall coverage, underlying data sources, provided functionality, and geographic feature type ontologies. Consequently, place types that share a common name may differ substantially between gazetteers, whereas types labeled differently may, in fact, specify the same or similar places. This makes data integration and federated queries challenging, if not impossible. To further complicate the situation, most popular and widely adopted geo‐ontologies are lightweight and thus under‐specific to a degree where their alignment and matching become nothing more than educated guesses. The most promising approach to addressing this problem, and thereby enabling the meaningful integration of gazetteer data across feature types, seems to be a combination of top‐down knowledge representation with bottom‐up data‐driven techniques such as feature engineering and machine learning. In this work, we propose to derive indicative spatial signatures for geographic feature types by using spatial statistics. We discuss how to create such signatures by feature engineering and demonstrate how the signatures can be applied to better understand the differences and commonalities of three major gazetteers, namely DBpedia Places, GeoNames, and TGN.  相似文献   
2.
Hilary McMillan 《水文研究》2020,34(6):1393-1409
Hydrologic signatures are metrics that quantify aspects of streamflow response. Linking signatures to underlying processes enables multiple applications, such as selecting hydrologic model structure, analysing hydrologic change, making predictions in ungauged basins, and classifying watershed function. However, many lists of hydrologic signatures are not process-based, and knowledge about signature-process links has been scattered among studies from experimental watersheds and model selection experiments. This review brings together those studies to catalogue more than 50 signatures representing evapotranspiration, snow storage and melt, permafrost, infiltration excess, saturation excess, groundwater, baseflow, connectivity, channel processes, partitioning, and human alteration. The review shows substantial variability in the number, type, and timescale of signatures available to represent each process. Many signatures provide information about groundwater storage, partitioning, and connectivity, whereas snow processes and human alteration are underrepresented. More signatures are related to the seasonal scale than the event timescale, and land surface processes (ET, snow, and overland flow) have no signatures at the event scale. There are limitations in some signatures that test for occurrence but cannot quantify processes, or are related to multiple processes, making automated analysis more difficult. This review will be valuable as a reference for hydrologists seeking to use streamflow records to investigate a particular hydrologic process or to conduct large-sample analyses of patterns in hydrologic processes.  相似文献   
3.
We have mapped the region of Oran, Algeria, using multispectral remote sensing with different resolutions. For the identification of objects on the ground using their spectral signatures, two methods were applied to images from SPOT, LANDSAT, IRS-1 C and ASTER. The first one is called Base Rule method (BR method) and is based on a set of rules that must be met at each pixel in the different bands reflectance calibrated and henceforth it is assigned to a given class. The construction of these rules is based on the spectral profiles of popular classes in the scene studied. The second one is called Spectral Angle Mapper method (SAM method) and is based on the direct calculation of the spectral angle between the target vector representing the spectral profile of the desired class and the pixel vector whose components are numbered accounts in the different bands of the calibrated image reflectance. This new method was performed using PCSATWIN software developed by our own laboratory LAAR. After collecting a library of spectral signatures with multiple libraries, a detailed study of the principles and physical processes that can influence the spectral signature has been conducted. The final goal is to establish the range of variation of a spectral profile of a well-defined class and therefore to get precise bases for spectral rules. From the results we have obtained, we find that the supervised classification of these pixels by BR method derived from spectral signatures reduces the uncertainty associated with identifying objects by enhancing significantly the percentage of correct classification with very distinct classes.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号