首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   148篇
  免费   20篇
  国内免费   43篇
大气科学   45篇
地球物理   18篇
地质学   112篇
海洋学   10篇
综合类   2篇
自然地理   24篇
  2024年   3篇
  2023年   2篇
  2022年   9篇
  2021年   5篇
  2020年   8篇
  2019年   5篇
  2018年   23篇
  2017年   6篇
  2016年   6篇
  2015年   9篇
  2014年   9篇
  2013年   7篇
  2012年   9篇
  2011年   8篇
  2010年   5篇
  2009年   9篇
  2008年   19篇
  2007年   17篇
  2006年   9篇
  2005年   7篇
  2004年   7篇
  2003年   5篇
  2002年   5篇
  2001年   4篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1996年   6篇
  1993年   1篇
  1992年   2篇
  1990年   1篇
  1985年   1篇
排序方式: 共有211条查询结果,搜索用时 312 毫秒
1.
A unique succession of volcanogenic deposits with representative paleontological remains characterizing the Permian-Triassic boundary interval in the North Siberian platform and Taimyr is described. The succession is suitable for selecting a standard for the Triassic base in nonmarine deposits. Abundant and diverse fossils occurring in the succession evidence that volcanism responsible for origin of the plateau basalt province in Siberia was not a brief epoch of paroxysmal eruptions, which eliminated everything alive. Throughout the formation history of relevant plateau basalts, the organic world of the plateau and around existed and gradually evolved.  相似文献   
2.
A model of sedimentation settings is elaborated for siliciclastic deposits of the Vendian Vanavara Formation, the Katanga saddle, inner areas of the Siberian platform. Four lithologic complexes are distinguished in the formation. The lower complex is composed of proluvial continental deposits exemplifying a dejection cone of ephemeral streams. Its eroded surface is overlain by second complex largely represented by sandstones of coastal zone, which grade upward into siltstones and shales of deeper sedimentation settings (third complex). Sea transgression advanced in northeastern direction. The fourth complex resting with scouring on the third one was deposited in settings of a spacious shallow-water sea zone: in a tidal flat, sand shoals and islands. Sedimentological data are used to correlate more precisely the Vendian siliciclastic deposits of the Katanga saddle and northeastern Nepa-Botuoba anteclise, and to verify subdivision of the Vanavara Formation into subformations and character of its boundary with the overlying Oskoba Formation.  相似文献   
3.
Field investigations of the Deccan Trap lava sequence along a 70 km traverse in the Narsingpur-Harrai-Amarwara area of central India indicate twenty lava flows comprising a total thickness of around 480 m. Primary volcanic structures like vesicles and cooling joints are conspicuous in this volcanic succession and are used to divide individual flows into three well-defined zones namely the lower colonnade zone, entablature zone, and the upper colonnade zone. The variable nature of these structural zones is used for identification and correlation of lava flows in the field. For twenty lava flows, the thicknesses of upper colonnade zones of eight flows are ∼5 m while those of eight other flows are ∼8 m each. The thicknesses of upper colonnade zones of remaining four flows could not be measured in the field. Using the thicknesses of these upper colonnade zones and standard temperature-flow thickness-cooling time profiles for lava pile, the total cooling time of these sixteen Deccan Trap lava flows has been estimated at 12 to 15 years.  相似文献   
4.
Early Proterozoic granitoids are of a limited occurrence in the Baikal fold area being confined here exclusively to an arcuate belt delineating the outer contour of Baikalides, where rocks of the Early Precambrian basement are exposed. Geochronological and geochemical study of the Kevakta granite massif and Nichatka complex showed that their origin was related with different stages of geological evolution of the Baikal fold area that progressed in diverse geodynamic environments. The Nichatka complex of syncollision granites was emplaced 1908 ± 5 Ma ago, when the Aldan-Olekma microplate collided with the Nechera terrane. Granites of the Kevakta massif (1846 ± 8 Ma) belong to the South Siberian postcollision magmatic belt that developed since ~1.9 Ga during successive accretion of microplates, continental blocks and island arcs to the Siberian craton. In age and other characteristics, these granites sharply differ from granitoids of the Chuya complex they have been formerly attributed to. Accordingly, it is suggested to divide the former association of granitoids into the Chuya complex proper of diorite-granodiorite association ~2.02 Ga old (Neymark et al., 1998) with geochemical characteristics of island-arc granitoids and the Chuya-Kodar complex of postcollision S-type granitoids 1.85 Ga old. The Early Proterozoic evolution of the Baikal fold area and junction zone with Aldan shield lasted about 170 m.y. that is comparable with development periods of analogous structures in other regions of the world.  相似文献   
5.
Geochronological database considered in the work and characterizing the Anabar collision system in the Northeast Siberian craton includes coordinated results of Sm-Nd and Rb-Sr dating of samples from crustal xenoliths in kimberlites, deep drill holes, and bedrock outcrops. As is inferred, collision developed in three stages dated at 2200–2100, 1940–1760, and 1710–1630 Ma. The age of 2000–1960 Ma is established for substratum of mafic rocks, which probably originated during the lower crust interaction with asthenosphere due to the local collapse of the collision prism. Comparison of Sm-Nd and Rb-Sr isochron dates shows that the system cooling from ≈700 to ≈300°C lasted approximately 300 m.y. with a substantial lag relative to collision metamorphism and granite formation. It is assumed that accretion of the Siberian craton resulted in formation of a giant collision mountainous structure of the Himalayan type that was eroded by 1.65 Ga ago, when accumulation of gently dipping Meso-to Neoproterozoic (Riphean) platform cover commenced.  相似文献   
6.
The Bouguer anomaly and the total intensity magnetic maps of Saurashtra have delineated six circular gravity highs and magnetic anomalies of 40-60 mGal (10−5m/s2) and 800-1000 nT, respectively. Three of them in western Saurashtra coincide with known volcanic plugs associated with Deccan Volcanic Province (DVP), while the other three in SE Saurashtra coincide with rather concealed plugs exposed partially. The DVP represents different phases of eruption during 65.5±2.5 Ma from the Reunion plume. The geochemical data of the exposed rock samples from these plugs exhibit a wide variation in source composition, which varies from ultramafic/mafic to felsic composition of volcanic plugs in western Saurashtra and an alkaline composition for those in SE Saurashtra. Detailed studies of granophyres and alkaline rocks from these volcanic plugs reveal a calc-alkaline differentiation trend and a continental tectonic setting of emplacement. The alkaline plugs of SE Saurashtra are associated with NE-SW oriented structural trends, related to the Gulf of Cambay and the Cambay rift basin along the track of the Reunion plume. This indicates a deeper source for these plugs compared to those in the western part and may represent the primary source magma. The Junagadh plug with well differentiated ring complexes in western Saurashtra shows well defined centers of magnetic anomaly while the magnetic anomalies due to other plugs are diffused though of the same amplitude. This implies that other plugs are also associated with mafic/ultramafic components, which may not be differentiated and may be present at subsurface levels. Paleomagnetic measurements on surface rock samples from DVP in Saurashtra suggest a susceptibility of 5.5×10−2 SI units with an average Koenigsberger ratio (Qn) of almost one and average direction of remanent magnetization of D=147.4° and I=+56.1°. The virtual geomagnetic pole (VGP) position computed from the mean direction of magnetization for the volcanic plugs and Deccan basalt of Saurashtra is 30°N and 74°W, which is close to the VGP position corresponding to the early phases of Deccan eruption. Modeling of gravity and magnetic anomalies along two representative profiles across Junagadh and Barda volcanic plugs suggest a bulk density of 2900 and 2880 kg/m3, respectively and susceptibility of 3.14×10−2 SI units with a Qn ratio of 0.56 which are within the range of their values obtained from laboratory measurements on exposed rock samples. The same order of gravity and magnetic anomalies observed over the volcanic plugs of Saurashtra indicates almost similar bulk physical properties for them. The inferred directions of magnetization from magnetic anomalies, however, are D=337° and 340° and I=−38° and −50° which represent the bulk direction of magnetization and also indicate a reversal of the magnetic field during the eruption of these plugs. Some of these plugs are associated with seismic activities of magnitude ≤4 at their contacts. Based on this analysis, other circular/semi-circular gravity highs of NW India can be qualitatively attributed to similar subsurface volcanic plugs.  相似文献   
7.
The geological, structural and tectonic evolutions of the Yenisey Ridge fold-and-thrust belt are discussed in the context of the western margin of the Siberian craton during the Neoproterozoic. Previous work in the Yenisey Ridge had led to the interpretation that the fold belt is composed of high-grade metamorphic and igneous rocks comprising an Archean and Paleoproterozoic basement with an unconformably overlying Mesoproterozoic–Neoproterozoic cover, which was mainly metamorphosed under greenschist-facies conditions. Based on the existing data and new geological and zircon U–Pb data, we recognize several terranes of different age and composition that were assembled during Neoproterozoic collisional–accretional processes on the western margin of the Siberian craton. We suggest that there were three main Neoproterozoic tectonic events involved in the formation of the Yenisey Ridge fold-and-thrust belt at 880–860 Ma, 760–720 Ma and 700–630 Ma. On the basis of new geochronological and petrological data, we propose that the Yeruda and Teya granites (880–860 Ma) were formed as a result of the first event, which could have occurred in the Central Angara terrane before it collided with Siberia. We also propose that the Cherimba, Ayakhta, Garevka and Glushikha granites (760–720 Ma) were formed as a result of this collision. The third event (700–630 Ma) is fixed by the age of island-arc and ophiolite complexes and their obduction onto the Siberian craton margin. We conclude by discussing correlation of these complexes with those in other belts on the margin of the Siberian craton.  相似文献   
8.
A detailed palaeomagnetic and magnetostratigraphic study of the Permian–Triassic Siberian Trap Basalts (STB) in the Noril'sk and Abagalakh regions in northwest Central Siberia is presented. Thermal (TH) and alternating field (AF) demagnetisation techniques have been used and yielded characteristic magnetisation directions. The natural remanent magnetisation of both surface and subsurface samples is characterised by a single component in most cases. Occasionally, a viscous overprint can be identified which is easily removed by TH or AF demagnetisation.The resulting average mean direction after tectonic correction for the 95 flows sampled in outcrops is D=93.7°, I=74.7° with k=19 and α95=3.3°. The corresponding pole position is 56.2°N, 146.0°E.Unoriented samples from four boreholes cores in the same regions have also been studied. They confirm the reversed–normal succession found in outcrops. The fact that only one reversal of the Earth's magnetic field has been recorded in the traps can be taken as evidence for a rather short time span for the major eruptive episode in this region. However, there is evidence elsewhere that the whole volcanic activity associated with the emplacement of the STB was much longer and lasted several million years.  相似文献   
9.
This study applies modern seismic geomorphology techniques to deep-water collapse features in the Orange Basin (Namibian margin, Southwest Africa) in order to provide unprecedented insights into the segmentation and degradation processes of gravity-driven linked systems. The seismic analysis was carried out using a high-quality, depth-migrated 3D volume that images the Upper Cretaceous post-rift succession of the basin, where two buried collapse features with strongly contrasting seismic expression are observed. The lower Megaslide Complex is a typical margin-scale, extensional-contractional gravity-driven linked system that deformed at least 2 km of post-rift section. The complex is laterally segmented into scoop-shaped megaslides up to 20 km wide that extend downdip for distances in excess of 30 km. The megaslides comprise extensional headwall fault systems with associated 3D rollover structures and thrust imbricates at their toes. Lateral segmentation occurs along sidewall fault systems which, in the proximal part of the megaslides, exhibit oblique extensional motion and define horst structures up to 6 km wide between individual megaslides. In the toe areas, reverse slip along these same sidewall faults, creates lateral ramps with hanging wall thrust-related folds up to 2 km wide. Headwall rollover anticlines, sidewall horsts and ramp anticlines may represent novel traps for hydrocarbon exploration on the Namibian margin.The Megaslide Complex is unconformably overlain by few hundreds of metres of highly contorted strata which define an upper Slump Complex. Combined seismic attributes and detailed seismic facies analysis allowed mapping of headscarps, thrust imbrications and longitudinal shear zones within the Slump Complex that indicate a dominantly downslope movement of a number of coalesced collapse systems. Spatial and stratal relationships between these shallow failures and the underlying megaslides suggest that the Slump Complex was likely triggered by the development of topography created by the activation of the main structural elements of the lower Megaslide Complex.This study reveals that gravity-driven linked systems undergo lateral segmentation during their evolution, and that their upper section can become unstable, favouring the initiation of a number of shallow failures that produce widespread degradation of the underlying megaslide structures. Gravity-driven linked systems along other margins are likely to share similar processes of segmentation and degradation, implying that the megaslide-related, hydrocarbon trapping structures discovered in the Namibian margin may be common elsewhere, making megaslides an attractive element of deep-water exploration along other gravitationally unstable margins.  相似文献   
10.
The paper deals with geological and geochemical studies of granitoids of the Olenek complex in the Olenek uplift of the basement of the northern Siberian craton. The age of these granitoids was earlier estimated at 2036 ± 11 Ma. The granitoids of the Olenek complex correspond in composition to high-alumina quartz diorites, granites, and leucogranites of the normal petrochemical series. According to geochemical and mineralogical characteristics, the quartz diorites can be assigned to granites of the transitional I-S type, and the granites and leucogranites, to S-type granites. The 8Nd(T values in the granites of the Olenek complex vary from -0.2 to + 1.4, and the Nd model age is 2.4-2.5 Ga. The quartz diorite is characterized by 8Nd(T) = + 3.0 and a Nd model age T(DM) = 2.2 Ga. The geochemical characteristics of the granites and leucogranites indicate their formation through the melting of a source of graywacke composition, whereas the quartz diorites resulted, most likely, from the mixing of granitic and basaltic melts. The fact that the granitoids of the Olenek complex intruded the folded rocks of the Eekit Formation but stay virtually undeformed massive bodies suggests that they formed at the postdeformation stage of the regional evolution after the completion of the Paleoproterozoic orogenic events. The intrusion of granitoids marks the completion of the formation of the Early Proterozoic Eekit fold belt on the western (in the recent coordinates) margin of the Birekta terrane of the Olenek superterraine and the final formation of the superterrane structure. At the next stage of magmatism (1.98-1.96 Ga), best pronounced in the uplifts of the basement of the northern Siberian craton, all terranes forming the Anabar and Olenek superterranes assembled into a single structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号