首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   6篇
  国内免费   1篇
测绘学   3篇
大气科学   4篇
地球物理   29篇
地质学   5篇
综合类   1篇
自然地理   24篇
  2021年   2篇
  2017年   3篇
  2016年   4篇
  2015年   2篇
  2014年   3篇
  2013年   5篇
  2012年   1篇
  2011年   4篇
  2010年   2篇
  2009年   4篇
  2008年   6篇
  2007年   3篇
  2006年   7篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2002年   3篇
  2001年   3篇
  2000年   1篇
  1997年   1篇
  1994年   1篇
  1990年   1篇
  1988年   1篇
  1986年   2篇
排序方式: 共有66条查询结果,搜索用时 31 毫秒
1.
This research evaluates the impact of rural-to-urban land use conversion on channel morphology and riparian vegetation for three streams in the Central Redbed Plains geomorphic province (central Great Plains ecoregion) of Oklahoma. The Deep Fork Creek watershed is largely urbanized; the Skeleton Creek watershed is largely rural; and the Stillwater Creek watershed is experiencing a rapid transition from rural to urban land cover. Each channel was divided into reaches based on tributary junctions, sinuosity, and slope. Field surveys were conducted at transects in a total of 90 reaches, including measurements of channel units, channel cross-section at bankfull stage, and riparian vegetation. Historical aerial photographs were available for only Stillwater Creek watershed, which were used to document land cover in this watershed, especially changes in the extent of urban areas (impervious cover).The three streams have very low gradients (< 0.001), width-to-depth ratios < 10, and cohesive channel banks, but have incised into red Permian shales and sandstone. The riparian vegetation is dominated by cottonwoods, ash, and elm trees that provide a dense root mat on stream banks where the riparian vegetation is intact. Channels increased in width and depth in the downstream direction as is normally expected, but the substrate materials and channel units remained unchanged. Statistical analyses demonstrated that urbanization did not explain spatial patterns of changes in any variables. These three channels in the central Redbed Plains are responding as flumes during peak flows, funneling runoff and the wash-load sediment downstream in major runoff events without any effect on channel dimensions. Therefore, local geological conditions (similar bedrock, cohesive substrates and similar riparian vegetation) are mitigating the effects of urbanization.  相似文献   
2.
Riparian meadows of southern Patagonia are temporally and spatially heterogeneous habitats. They are thought to play a key role in regulating the dynamics of arid grazed steppes of the region. We conducted a 2-year study with sheep to determine the influence of two grazing conditions (deferment and spring grazing) on structural and nutritional parameters of three vegetation types apparently associated with a soil moisture gradient in a riparian meadow in southern Santa Cruz (Argentina). Spring deferment allowed forage accumulation in very moist and intermediate vegetation types by the beginning of the summer and had no detrimental impact on forage quality. Deferment had no effect on biomass accumulation of the drier vegetation type at our study site. Structural attributes of the vegetation appeared to affect spatial grazing patterns of sheep. Soil-related patchiness, rather than sheep grazing, appeared to control vegetation structure and nutritional value. The proportion of more mesic plant communities in riparian habitats of Patagonia could determine the outcome of plant–animal interactions in these systems. Practical recommendations of grazing capacity in paddocks, or more theoretical considerations of ecosystem dynamics of the Patagonian steppes need to explicitly consider the internal patchiness of riparian habitats.  相似文献   
3.
Natural riparian forest wetlands are known to be effective in their ability to remove nitrate by denitrification and sediments with attached phosphorus via sedimentation. On the other hand, litter input and decomposition is a process of crucial importance in cycling of nitrogen and phosphorus in a forest ecosystem.In this study we investigated the amount of nitrogen and phosphorus entering the alder fen ecosystem through leaf litter and its decomposition and the removal capacity of nitrogen and phosphorus by measuring denitrification and sedimentation in the alder fen.We found an average input of leaf litter during fall 1998 of 226 g m−2 yr−1 DW with nutrient concentration of 0.17% P and 1.6% N. This means a yearly input of 0.4 g m−2 yr−1 P and 3.6 g m−2 yr−1 N. The decomposition of leaf litter using litter bags with small and large mesh size resulted in bags with macroinvertebrates (large mesh size) and without macroinvertebrates (small mesh size). After 57 days the litter bags with macroinvertebrates had a decomposition rate of 79%.Denitrification was measured in May and June of 1997 using the acetylene inhibition technique on intact soil cores and slurry-experiments. The average annual denitrification rate was 0.2 g m−2 yr−1 N using data from the core experiments. The denitrification rate was higher after addition of nitrate, indicating that denitrification in the riparian alder fen is mainly controlled by nitrate supply.The sedimentation rate in the investigated alder fen ranged from 0.47 kg m−2 yr−1 DW to 4.46 kg m−2 yr−1 DW in 1998 depending on the study site and method we used. Sedimentation rates were lower in newly designed plate traps than in cylinder traps. The alder fen also showed lower rates than the adjacent creek Briese. Average phosphorus removal rate was 0.33 g m−2 yr−1 P.Input sources for the surface water of the alder fen are sediment mineralization and decomposition of leaf litter; output sources are sedimentation and denitrification. This study showed that a nutrient input of 24.58 kg ha−1 yr−1 N, 8.8 kg ha−1 yr−1 P and 419 kg ha−1 yr−1 DOC into the surface water of the alder fen is possible. Alder fens cannot improve water quality of an adjacent river system. This is only true for a nearly pristine alder fen with the hydrology of 10 months flooded conditions and 2 months non-flooding conditions a year.  相似文献   
4.
北江大堤植草护坡效应研究   总被引:8,自引:0,他引:8  
北江大堤在航运的浪涛侵蚀以及洪水和雨水的冲蚀下,部分河段边坡已变得支离破碎,对广州和珠江三角洲地区的防洪安全构成了严重威胁。香根草和百喜草都能耐较长时间的水淹,并都有较强的抗逆性。结合土石方工程,并辅以三维网覆盖,将香根草和百喜种在北江两岸的边坡上。结果,这一护坡措施不仅有较地防止了洪流冲蚀和雨水侵蚀,较好地起到了固土护坡作用,而且绿化美化了河岸边坡,成功解决了河湖水库的河岸带难以植被覆盖的难题。  相似文献   
5.
An analysis is undertaken to develop techniques to remotely sense relative evapotranspiration outputs in the distal Okavango Delta using enhanced thematic mapper and ground based techniques to help quantify water loss. Much of this work focuses on riparian woodlands which, especially in the distal portion of the Delta, are regarded as being significant in terms of groundwater removal by transpiration. This was confirmed as vegetation cover mapping led to the identification of two riparian classes which, by association with high resistivity aeromagnetic data, were found to be rooted in near surface fresh groundwater. This paper indicates that riparian trees which remain green year long, partly sustain their growth as a result of groundwater uptake. A comparison of frequently flooded and dry floodplains with distinct riparian zones was undertaken using spectral techniques (pixel radiance values and leaf water content indices) to determine whether flooding and lateral groundwater flow stimulated growth (and therefore transpiration rate) following dormancy. Results indicate a basic similarity between the two systems with mixed evidence of assumed leaf growth. Related phenological observations in the riparian zone of the dry floodplain show that renewal of leaf growth is primarily related to rainfall, not flood events in the distal Delta. The results of this work should help effect both surface and groundwater management in the vicinity of population centres in the distal Delta.  相似文献   
6.
 A significant proportion of stream sediment yield in North America comes from stream channel and bank erosion. One method used for stream stabilization is the bank installation of timber and stone fish-shelter structures, but there is little evidence for their potential effectiveness. Nine to nineteen years of precise survey data from Coon Creek, Wisconsin, however, show that fish structures enhance sediment deposition along the stream and may retard lateral migration of channels. Such structures have greater utility for sediment control when streams are eroding away a high bank and replacing it with a lower bank. Received: 18 October 1996 · Accepted: 4 February 1997  相似文献   
7.
Anabranching is characteristic of a number of rivers in diverse environmental settings worldwide, but has only infrequently been described from bedrock-influenced rivers. A prime example of a mixed bedrock-alluvial anabranching river is provided by a 150-km long reach of the Orange River above Augrabies Falls, Northern Cape Province, South Africa. Here, the perennial Orange flows through arid terrain consisting mainly of Precambrian granites and gneisses, and the river has preferentially eroded bedrock joints, fractures and foliations to form multiple channels which divide around numerous, large (up to 15 km long and 2 km wide), stable islands formed of alluvium and/or bedrock. Significant local variations in channel-bed gradient occur along the river, which strongly control anabranching style through an influence on local sediment budgets. In relatively long (>10 km), lower gradient reaches (<0.0013) within the anabranching reach, sediment supply exceeds local transport capacity, bedrock usually only crops out in channel beds, and channels divide around alluvial islands which are formed by accretion in the lee of bedrock outcrop or at the junction with ephemeral tributaries. Riparian vegetation probably plays a key role in the survival and growth of these islands by increasing flow roughness, inducing deposition, and stabilising the sediments. Less commonly, channels may form by eroding into once-continuous island or floodplain surfaces. In shorter (<10 km), higher gradient reaches (>0.0013) within the anabranching reach, local transport capacity exceeds sediment supply, bedrock crops out extensively, and channels flow over an irregular bedrock pavement or divide around rocky islands. Channel incision into bedrock probably occurs mainly by abrasion, with the general absence of boulder bedforms suggesting that hydraulic plucking is relatively unimportant in this setting. Mixed bedrock-alluvial anabranching also occurs in a number of other rivers worldwide, and appears to be a stable and often long-lived river pattern adjusted to a number of factors commonly acting in combination: (1) jointed/fractured granitoid rock outcrop; (2) erosion-resistant banks and islands; (3) locally variable channel-bed gradients; (4) variable flow regimes.  相似文献   
8.
lINTRODUCTIONRangeandforestlandsofnorthwesternNorthAmericahavebeenutilizedforres0urceextracti0nandproductionsinceinitialhuman0ccupationofthecontinent.Intensive"managed"utilizati0nofec0systemsforspecificbenefitsincludingcattle,sheep,t1sh,w00dandagriculturalpr0ductshasbeenong0ingfornearly0ne-and-haIfcenturies.Intensiveresourceproducti0nhasto0oftenbeenacc0mpaniedbyunwanted"sideeffects"includingacceleratederosion,s0illossandsedimentdeliveredoffsitetod0wnstreamlocati0ns,estuariesandoceanicsin…  相似文献   
9.
The United States Department of Agriculture (USDA) Annualized Agricultural Non-Point Source Pollution model (AnnAGNPS) is used to help evaluate a watershed response to agricultural management practices to control water quality. However, AnnAGNPS version 3.5 does not contain features to estimate the effect of a riparian buffer (RB) system on water quality. The Riparian Ecosystem Management Model (REMM) is used to simulate the impact of riparian buffer systems on water quality. However, frequently the lack of measured upland loadings that are required by REMM simulation limits the application of REMM. To address this data gap, a study was conducted to integrate AnnAGNPS with REMM for RB system simulation. AnnAGNPS was used to simulate water and sediment loadings from an upland field into a three-zone RB system at the Gibbs Farm located in the Georgia coastal plain. These AnnAGNPS outputs were used as the inputs to REMM. REMM was used to simulate water and sediment movement along the riparian buffers. The AnnAGNPS simulated amount of annual runoff at the edge of the field was close to observed amounts (Nash-Sutcliffe efficiency of 0.92). It is believed that a substantial portion of sand was removed from the runoff one meter into the grass buffer where the samplers were located; therefore, sand was excluded from the AnnAGNPS simulation for comparison with observed sediment. Excluding sand, the AnnAGNPS predicted amount of annual sediment matches the observed amount fairly well (Nash-Sutcliffe efficiency of 0.46). In addition, based on evaluating the percent reduction of sediment at each zonal interface, the AnnAGNPS/REMM model well simulated the function of the RB system to reduce sediment.  相似文献   
10.
Riparian vegetation provides important wildlife habitat in the southwestern United States, but limited distributions and spatial complexity often leads to inaccurate representation in maps used to guide conservation. We test the use of data conflation and aggregation on multiple vegetation/land-cover maps to improve the accuracy of habitat models for the threatened western yellow-billed cuckoo (Coccyzus americanus occidentalis). We used species observations (n = 479) from a state-wide survey to develop habitat models from 1) three vegetation/land-cover maps produced at different geographic scales ranging from state to national, and 2) new aggregate maps defined by the spatial agreement of cover types, which were defined as high (agreement = all data sets), moderate (agreement ≥ 2), and low (no agreement required). Model accuracies, predicted habitat locations, and total area of predicted habitat varied considerably, illustrating the effects of input data quality on habitat predictions and resulting potential impacts on conservation planning. Habitat models based on aggregated and conflated data were more accurate and had higher model sensitivity than original vegetation/land-cover, but this accuracy came at the cost of reduced geographic extent of predicted habitat. Using the highest performing models, we assessed cuckoo habitat preference and distribution in Arizona and found that major watersheds containing high-probably habitat are fragmented by a wide swath of low-probability habitat. Focus on riparian restoration in these areas could provide more breeding habitat for the threatened cuckoo, offset potential future habitat losses in adjacent watershed, and increase regional connectivity for other threatened vertebrates that also use riparian corridors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号