首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   5篇
  国内免费   8篇
测绘学   2篇
地球物理   19篇
地质学   18篇
海洋学   2篇
  2022年   2篇
  2017年   1篇
  2016年   2篇
  2015年   3篇
  2014年   2篇
  2013年   5篇
  2012年   1篇
  2011年   6篇
  2010年   2篇
  2009年   1篇
  2008年   5篇
  2007年   2篇
  2006年   2篇
  2004年   2篇
  2003年   3篇
  2001年   1篇
  1998年   1篇
排序方式: 共有41条查询结果,搜索用时 15 毫秒
1.
非饱和土壤Richards方程入渗求解探讨   总被引:3,自引:0,他引:3  
根据理查兹 (Richards)方程求解非饱和土壤垂直一维入渗率历时规律 ,因缺乏土壤水分特性函数K(θ)、D(θ)的一般有效公式 ,而采用与实际相差甚远的定值或线性函数假设 ,使成果隐含过多经验成分或需要反复迭代计算。笔者在文献 [1]中提出的非饱和土壤水分特性函数的一般有效基础公式 ,用分离变量法直接求解Richards方程 ,用土壤水动力学方法分别导出了含有渗前土湿因子的新入渗公式。它摆脱了同类入渗公式对水分函数过于简单的概化假设和经验成分。为放弃迄今水文学产流计算中惯用的下渗容量曲线“截首留尾”的经验做法 ,以直接使用含有渗前土湿因子的下渗公式提供了理论依据 ,从而将有利于产流计算方法的改进和计算精度的提高。  相似文献   
2.
The hydrologic response of engineered media plays an important role in determining a stormwater control measure's ability to reduce runoff volume, flow rate, timing, and pollutant loads. Five engineered media, typical of living roof and bioretention stormwater control measures, were investigated in laboratory column experiments for their hydrologic responses to steady, large inflow rates. The inflow, medium water content response, and outflow were all measured. The water flow mechanism (uniform flow vs. preferential flow) was investigated by analyzing medium water content response in terms of timing, magnitude, and sequence with depth. Modeling the hydrologic process was conducted in the HYDRUS‐1D software, applying the Richards equation for uniform flow modeling, and a mobile–immobile model for preferential flow modeling. Uniform flow existed in most cases, including all initially dry living roof media with bimodal pore size distributions and one bioretention medium with unimodal pore size distribution. The Richards equation can predict the outflow hydrograph reasonably well for uniform flow conditions when medium hydraulic properties are adequately represented by appropriate functions. Preferential flow was found in two media with bimodal pore size distributions. The occurrence of preferential flow is more likely due to the interaction between the bimodal pore structure and the initial water content rather than the large inflow rate.  相似文献   
3.
Root zone soil water content impacts plant water availability, land energy and water balances. Because of unknown hydrological model error, observation errors and the statistical characteristics of the errors, the widely used Kalman filter (KF) and its extensions are challenged to retrieve the root zone soil water content using the surface soil water content. If the soil hydraulic parameters are poorly estimated, the KF and its extensions fail to accurately estimate the root zone soil water. The H‐infinity filter (HF) represents a robust version of the KF. The HF is widely used in data assimilation and is superior to the KF, especially when the performance of the model is not well understood. The objective of this study is to study the impact of uncertain soil hydraulic parameters, initial soil moisture content and observation period on the ability of HF assimilation to predict in situ soil water content. In this article, we study seven cases. The results show that the soil hydraulic parameters hold a critical role in the course of assimilation. When the soil hydraulic parameters are poorly estimated, an accurate estimation of root soil water content cannot be retrieved by the HF assimilation approach. When the estimated soil hydraulic parameters are similar to actual values, the soil water content at various depths can be accurately retrieved by the HF assimilation. The HF assimilation is not very sensitive to the initial soil water content, and the impact of the initial soil water content on the assimilation scheme can be eliminated after about 5–7 days. The observation interval is important for soil water profile distribution retrieval with the HF, and the shorter the observation interval, the shorter the time required to achieve actual soil water content. However, the retrieval results are not very accurate at a depth of 100 cm. Also it is complex to determine the weighting coefficient and the error attenuation parameter in the HF assimilation. In this article, the trial‐and‐error method was used to determine the weighting coefficient and the error attenuation parameter. After the first establishment of limited range of the parameters, ‘the best parameter set’ was selected from the range of values. For the soil conditions investigated, the HF assimilation results are better than the open‐loop results. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
4.
基于有限元(FEM)和改进的积分型Richards方程解法(IRE方法)对蒸发条件下5种土体土壤水分响应进行了研究.数值实验结果表明:在土壤表面潜在蒸发量0.50 cm/d的情况下,5种土体土壤含水率变化曲线均呈现单拐点两阶段的特点,拐点出现在地表下20cm左右,拐点上部区域曲线曲率大于下部区域,两阶段的划分以15d左右为界,前阶段比后阶段的土壤水分变化快;蒸发模拟结果很好的证明了蒸发三阶段理论.总蒸发量和下边界排水量与土壤结构密切相关,而总水量变化量和变化率与土壤质地有关.IRE方法与FEM模拟结果基本一致,解法相对简单,模拟结果可靠性高.  相似文献   
5.
Models for water transfer in the crop–soil system are key components of agro-hydrological models for irrigation, fertilizer and pesticide practices. Many of the hydrological models for water transfer in the crop–soil system are either too approximate due to oversimplified algorithms or employ complex numerical schemes. In this paper we developed a simple and sufficiently accurate algorithm which can be easily adopted in agro-hydrological models for the simulation of water dynamics. We used a dual crop coefficient approach proposed by the FAO for estimating potential evaporation and transpiration, and a dynamic model for calculating relative root length distribution on a daily basis. In a small time step of 0.001 d, we implemented algorithms separately for actual evaporation, root water uptake and soil water content redistribution by decoupling these processes. The Richards equation describing soil water movement was solved using an integration strategy over the soil layers instead of complex numerical schemes. This drastically simplified the procedures of modeling soil water and led to much shorter computer codes. The validity of the proposed model was tested against data from field experiments on two contrasting soils cropped with wheat. Good agreement was achieved between measurement and simulation of soil water content in various depths collected at intervals during crop growth. This indicates that the model is satisfactory in simulating water transfer in the crop–soil system, and therefore can reliably be adopted in agro-hydrological models. Finally we demonstrated how the developed model could be used to study the effect of changes in the environment such as lowering the groundwater table caused by the construction of a motorway on crop transpiration.  相似文献   
6.
New in situ time-series data were acquired by two ADCP moorings placed on the shelf off Richards Bay on the east coast of South Africa at depths of 25 m and 582 m between October 2009 and August 2010. The 11-month inshore bottom-temperature record revealed five substantial upwelling events lasting 5–10 days each where temperatures decreased by about 7 °C to 17–18 °C. Satellite sea surface temperature data showed these events to coincide with cold-water plumes occupying the northern wedge of the KwaZulu-Natal (KZN) Bight. Numerous shorter duration (1–2 days) upwelling events with less vivid surface expressions were also observed throughout the entire record where bottom temperature dropped by 2–3 °C. The last four months of the record were characterised by a protracted cool period lacking a seasonal trend but punctuated with oscillations of warm and cooler bottom water. In contrast to earlier studies that suggested upwelling was topographically and dynamically driven by the juxtaposition of the Cape St Lucia offset and the Agulhas Current (a solitary mechanism), our analysis showed almost all major and minor cold-water intrusions to coincide with upwelling-favourable north-easterly winds that simultaneously force a south-westerly coastal current. Ekman veering in the bottom boundary layer of the Agulhas Current, and the concomitant movement of cold water up the slope, was found to coexist at times with coastal upwelling, but its absence did not impede inshore cold-water intrusions, calling into question its role as a primary driver of upwelling. Both major and minor upwelling events were observed to promote phytoplankton blooms in the northern KZN Bight which commonly extended to the Thukela River. Wind-driven upwelling was also observed in the inner bight between Richards Bay and Port Durnford, explaining the ribbon of coastal chlorophyll continuously observed on ocean colour images between Cape St Lucia and the Thukela River. Similarities in upwelling character and mechanisms are observed between the northern KZN Bight and the Florida Current shelf systems.  相似文献   
7.
Jiann‐Mou Chen 《水文研究》2008,22(26):5037-5047
Most methods developed to represent water flow phenomena in an unconfined aquifer with a fully penetrated pumping well are either numerical, such as the well‐known FEMWTER model, or experimental; analytical models of a partially penetrated pumping well are rare. This study employs the linearized Richards equation as the governing equation, with the aid of Fourier Integral Transformation, to obtain an analytical solution of the water content distribution in an unconfined aquifer with a partially penetrated pumping well. The results from this study could serve to substantiate in some sense results from numerical models. In addition, the theory developed herein can be modified to simulate a vacuum‐pressured pumping well since it is derived by considering, among others, the location and length of a well screen with fluxes. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
8.
朱悦璐  陈磊 《岩土力学》2022,43(1):119-126
经典的Richards入渗控制方程属于偏微分方程,具有强烈的非线性,难以求得解析解。以入渗时间为最小作用量,基于Richards方程建立关于入渗路径的时间泛函,将考虑重力项的非饱和土垂直入渗问题转化为泛函极值问题,并构造等价的Euler-Lagrange方程进行求解。计算结果表明,扩散系数D(?)与概化湿润锋距离具有函数关系,当扩散系数D(?)形式已知时,可求得最优路径下湿润锋处含水率、较远处湿润锋最小含水率、土壤含水率最大熵分布3个问题,并基于最优路径检验了本研究条件下,Boltzmann变换和线性变换求解Richards方程的精度。求解过程未引进新变量化简Richards方程,不改变原方程结构,因此其解具有普遍性,可作为非饱和土力学计算的一个补充。  相似文献   
9.
集合卡曼滤波由于易于使用而被广泛地应用到陆面数据同化研究中,它是建立在模型为线性、误差为正态分布的假设上,而实际土壤湿度方程是高度非线性的,并且当土壤过干或过湿时会发生样本偏斜.为了全面评估它在同化表层土壤湿度观测来反演土壤湿度廓线的性能,特引入不需要上述假设的采样重要性重采样粒子滤波,比较非线性和偏斜性对同化算法的影响.结果显示:不管是小样本还是大样本,集合卡曼滤波都能快速、准确地逼近样本均值,而粒子滤波只有在大样本时才能缓慢地趋近;此外,集合卡曼滤波的粒子边缘概率密度及其偏度和峰度与粒子滤波完全不同,前者粒子虽不完全满足正态分布,但始终为单峰状态,而后者粒子随同化推进经历了单峰到双峰再到单峰的变化.  相似文献   
10.
非饱和土壤渗透的快速数值计算   总被引:3,自引:0,他引:3       下载免费PDF全文
给出非饱和土壤渗透计算求解理查兹方程的有限差分法。该计算值与实测值吻合较好。这个方法使用了水土势双曲正弦变换的隐式差分格式。砂土、壤土及粘土范围内的渗透过程在微机上几十秒钟内即可被模拟出来,其误差很小。非饱和土壤的渗透特性可以划分为地表积水前、地表积水后及退水过程三种类型。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号