首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   7篇
  国内免费   7篇
测绘学   11篇
大气科学   1篇
地球物理   12篇
地质学   17篇
综合类   6篇
自然地理   25篇
  2023年   2篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   9篇
  2018年   10篇
  2017年   3篇
  2016年   5篇
  2015年   7篇
  2014年   2篇
  2013年   7篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2009年   4篇
  2008年   2篇
  2007年   6篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  1998年   1篇
排序方式: 共有72条查询结果,搜索用时 15 毫秒
1.
RUSLE及其影响因子的快速计算分析   总被引:4,自引:0,他引:4  
RUSLE是目前应用最广泛的土壤侵蚀模型。虽然是一种经验模型,但是其影响因子计算仍然非常复杂,满足不了区域土壤侵蚀的快速提取要求。针对这种状况,文章在介绍RUSLE手册中每个影响因子计算方式基础上,分析总结了可进行快速计算的方法,实验表明,采用文章推荐的因子计算方式,可达到快速有效的目的。  相似文献   
2.
彭建  李丹丹  张玉清 《山地学报》2007,25(5):548-556
土壤侵蚀空间分布特征,是进行土壤侵蚀防治规划、实践的重要基础与依据。研究以云南省丽江县为例,应用RUSLE估算了县域土壤侵蚀量,并基于G IS的空间统计分析功能,分析了土壤侵蚀在海拔、坡度与土地利用类型等方面的空间分布特征。结果表明,全县平均土壤侵蚀模数为52.50 t/(hm2.a),属于强度侵蚀,县域东部的金沙江沿岸、3 500~6 000 m高程带、25°~90°坡度带,以及裸地与荒草地、旱地等不同类型区域是研究区土壤侵蚀治理的重点地区。  相似文献   
3.
In China, many scenic and tourism areas are suffering from the urbanization that results from physical development of tourism projects, leading to the removal of the vegetative cover, the creation of areas impermeable to water, in-stream modifications, and other problems. In this paper, the risk of soil erosion and its ecological risks in the West Lake Scenic Spots (WLSS) area were quantitatively evaluated by integrating the revised universal soil loss equation (RUSLE) with a digital elevation model (DEM) and geographical information system (GIS) software. The standard RUSLE factors were modified to account for local climatic and topographic characteristics reflected in the DEM maps, and for the soil types and vegetation cover types. An interface was created between the Areinfo software and RUSLE so that the level of soil erosion and its ecological risk in the WLSS area could be mapped immediately once the model factors were defined for the area. The results from an analysis using the Areinfo-RUSLE interface showed that the risk value in 93 % of the expanding western part of the WLSS area was moderate or more severe and the soil erosion risk in this area was thus large compared with that in the rest of the area. This paper mainly aimed to increase the awareness of the soil erosion risk in urbanizing areas and suggest that the local governments should consider the probable ecological risk resulting from soil erosion when enlarging and developing tourism areas.  相似文献   
4.
Due to the existence of fragile karst geo-ecological environments, such as environments with extremely poor soil cover, low soil-forming velocity, and fragmentized terrain and physiognomy, as well as inappropriate and intensive land use, soil erosion is a serious problem in Guizhou Province, which is located in the centre of the karst areas of southwestern China; evaluation of soil loss and spatial distribution for conservation planning is urgently needed. This study integrated the revised universal soil loss equation (RUSLE) with a GIS to assess soil loss and identify risk erosion areas in the Maotiao River watershed of Guizhou. Current land use/cover and management practices were evaluated to determine their effects on average annual soil loss and future soil conservation practices were discussed. Data used to generate the RUSLE factors included a Landsat Thematic Mapper image (land cover), digitized topographic and soil maps, and precipitation data. The results of the study compare well with the other studies and local data, and provide useful information for decision makers and planners to take appropriate land management measures in the area. It thus indicates the RUSLE–GIS model is a useful tool for evaluating and mapping soil erosion quantitatively and spatially at a larger watershed scale in Guizhou.  相似文献   
5.
The study evaluated the performance and suitability of AnnAGNPS model in assessing runoff, sediment loading and nutrient loading under Malaysian conditions. The watershed of River Kuala Tasik in Malaysia, a combination of two sub-watersheds, was selected as the area of study. The data for the year 2004 was used to calibrate the model and the data for the year 2005 was used for validation purposes. Several input parameters were computed using methods suggested by other researchers and studies carried out in Malaysia. The study shows that runoff was predicted well with an overall R2 value of 0.90 and E value of 0.70. Sediment loading was able to produce a moderate result of R2 = 0.66 and E = 0.49, nitrogen loading predictions were slightly better with R2 = 0.68 and E = 0.53, and phosphorus loading performance was slightly poor with an R2 = 0.63 and E = 0.33. The erosion map developed was in agreement with the erosion risk map produced by the Department of Agriculture, Malaysia. Rubber estates and urban areas were found to be the main contributors to soil erosion. The simulation results showed that AnnAGNPS has the potential to be used as a valuable tool for planning and management of watersheds under Malaysian conditions.  相似文献   
6.
The use of loose spoils on steep slopes for surface coal mining reclamation sites has been promoted by the US Department of Interior, Office of Surface Mining for the establishment of native forest, as prescribed by the Forest Reclamation Approach (FRA). Although low‐compaction spoils improve tree survival and growth, erodibility on steep slopes was suspected to increase. This study quantified a combined KC factor (combining the effects of the soil erodibility K factor and cover management C) for low compaction, steep‐sloped (>20°) reclaimed mine lands in the Appalachian region, USA. The combined KC factor was used because standard Unit Plot conditions required to separate these factors, per Revised Universal Soil Loss Equation (RUSLE) experimental protocols, were not followed explicitly. Three active coal mining sites in the Appalachian region of East Tennessee, each containing four replicate field plots, were monitored for rainfall and sediment yields during a 14‐month period beginning June 2009. Average cumulative erosivity for the study sites during the monitoring period was measured as 5248.9 MJ·mm·ha?1·h?1. The KC ranged between 0.001 and 0.05 t·ha·h·ha?1·MJ?1·mm?1, with the highest values occurring immediately following reclamation site construction as rills developed (June – August 2009). The KC for two study sites with about an 18–20 mm spoil D84 were above 0.01 t·ha·h·ha?1·MJ?1·mm?1 during rill development, and below 0.003 t·ha·h·ha?1·MJ?1·mm?1 after August 2009 for the post‐rill development period. The KC values for one site with a 40 mm spoil D84 were never above 0.008 t·ha·h·ha?1·MJ?1·mm?1 and also on average were lower, being more similar to the other two sites after the rill development period. Based on an initial KC factor (Ke) measured during the first few storm events, the average C factor (Ce) was estimated as 0.58 for the rill development period and 0.13 for the post‐rill development period. It appears that larger size fractions of spoils influence KC and Ce factors on low‐compaction steep slopes reclamation sites. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
7.
Revised Universal Soil Loss Equation(RUSLE) model coupled with transport limited sediment delivery(TLSD) function was used to predict the longtime average annual soil loss, and to identify the critical erosion-/deposition-prone areas in a tropical mountain river basin, viz., Muthirapuzha River Basin(MRB; area=271.75 km~2), in the southern Western Ghats, India. Mean gross soil erosion in MRB is 14.36 t ha~(-1) yr~(-1), whereas mean net soil erosion(i.e., gross erosion-deposition) is only 3.60 t ha~(-1) yr~(-1)(i.e., roughly 25% of the gross erosion). Majority of the basin area(~86%) experiences only slight erosion(5 t ha~(-1) yr~(-1)), and nearly 3% of the area functions as depositional environment for the eroded sediments(e.g., the terraces of stream reaches, the gentle plains as well as the foot slopes of the plateau scarps and the terrain with concordant summits). Although mean gross soil erosion rates in the natural vegetation belts are relatively higher, compared to agriculture, settlement/built-up areas and tea plantation, the sediment transport efficiency in agricultural areas and tea plantation is significantly high,reflecting the role of human activities on accelerated soil erosion. In MRB, on a mean basis, 0.42 t of soil organic carbon(SOC) content is being eroded per hectare annually, and SOC loss from the 4th order subbasins shows considerable differences, mainly due to the spatial variability in the gross soil erosion rates among the sub-basins. The quantitative results, on soil erosion and deposition, modelled using RUSLE and TLSD, are expected to be beneficial while formulating comprehensive land management strategies for reducing the extent of soil degradation in tropical mountain river basins.  相似文献   
8.
A comparative study of soil erosion modelling by MMF,USLE and RUSLE   总被引:1,自引:0,他引:1  
The quantitative assessment of spatial soil erosion is valuable information to control the erosion. The study area in a part of Narmada river in central India is selected. The main objective is to assess and compare the results obtained from three soil erosion models using GIS platform. Variation in the rate of erosion of the three models is compared considering varying slope, soil and land use of the area. Three models selected are Morgan–Morgan–Finney (MMF), Universal Soil Loss Equation (USLE) and Revised Universal Soil Loss Equation (RUSLE). The best fit or the most reliable model for the study area is selected after validation with the observed sedimentation data. The results give –39.45%, –9.60% and 4.80% difference in the values of sedimentation by MMF, USLE and RUSLE, respectively, from the observed data. Finally, RUSLE model has been found to be most reliable for the study area.  相似文献   
9.
This paper looks at the Green for Grain Project in northern Shaanxi Province.Based on remote sensing monitoring data,this study analyzes the locations of arable land in northern Shaanxi in the years 2000,2010 and 2013 as well as spatio-temporal changes over that period,and then incorporates data on the distribution of terraced fields to improve the input parameters of a RUSLE model and simulate and generate raster data on soil erosion for northern Shaanxi at different stages with a accuracy verification.Finally,combined with the dataset of farmland change,compared and analyzed the characteristics of soil erosion change in the converted farmland to forest(grassland)and the unconverted farmland in northern Shaanxi,so as to determine the project’s impact on soil erosion over time across the region.The results show that between 2000 and 2010,the soil erosion modulus of repurposed farmland in northern Shaanxi decreased 22.7 t/ha,equivalent to 47.08%of the soil erosion modulus of repurposed farmland in 2000.In the same period,the soil erosion modulus of non-repurposed farmland fell 10.99 t/ha,equivalent to 28.6%of the soil erosion modulus of non-repurposed farmland in 2000.The soil erosion modulus for all types of land in northern Shaanxi decreased by an average of 14.51 t/ha between 2000 and 2010,equivalent to 41.87%of the soil erosion modulus for the entire region in 2000.This suggests that the Green for Grain Project effectively reduced the soil erosion modulus,thus helping to protect the soil.In particular,arable land that was turned into forest and grassland reduced erosion most noticeably and contributed most to soil conservation.Nevertheless,in the period 2010 to 2013,which was a period of consolidation of the Green for Grain Project,the soil erosion modulus and change in volume of soil erosion in northern Shaanxi were significantly lower than in the previous decade.  相似文献   
10.
The capacity of soil and water conservation measures, defined as the maximum quantity of suitable soil and water conservation measures contained in a region, were determined for the Loess Plateau based on zones suitable for establishing terraced fields, forestland and grassland with the support of geographic information system (GIS) software. The minimum possible soil erosion modulus and actual soil erosion modulus in 2010 were calculated using the revised universal soil loss equation (RUSLE), and the ratio of the minimum possible soil erosion modulus under the capacity of soil and water conservation measures to the actual soil erosion modulus was defined as the soil erosion control degree. The control potential of soil erosion and water loss in the Loess Plateau was studied using this concept. Results showed that the actual soil erosion modulus was 3355 t?km-2?a-1, the minimum possible soil erosion modulus was 1921 t?km-2?a-1, and the soil erosion control degree was 0.57 (medium level) in the Loess Plateau in 2010. In terms of zoning, the control degree was relatively high in the river valley-plain area, soil-rocky mountainous area, and windy-sandy area, but relatively low in the soil-rocky hilly-forested area, hilly-gully area and plateau-gully area. The rate of erosion areas with a soil erosion modulus of less than 1000 t?km-2?a-1 increased from 50.48% to 57.71%, forest and grass coverage rose from 56.74% to 69.15%, rate of terraced fields increased from 4.36% to 19.03%, and per capita grain available rose from 418 kg?a-1 to 459 kg?a-1 under the capacity of soil and water conservation measures compared with actual conditions. These research results are of some guiding significance for soil and water loss control in the Loess Plateau.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号