首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4978篇
  免费   674篇
  国内免费   1092篇
测绘学   29篇
大气科学   111篇
地球物理   761篇
地质学   1776篇
海洋学   3038篇
天文学   7篇
综合类   274篇
自然地理   748篇
  2024年   20篇
  2023年   57篇
  2022年   176篇
  2021年   185篇
  2020年   195篇
  2019年   185篇
  2018年   194篇
  2017年   173篇
  2016年   211篇
  2015年   192篇
  2014年   287篇
  2013年   337篇
  2012年   223篇
  2011年   303篇
  2010年   245篇
  2009年   340篇
  2008年   351篇
  2007年   344篇
  2006年   323篇
  2005年   264篇
  2004年   253篇
  2003年   196篇
  2002年   208篇
  2001年   178篇
  2000年   173篇
  1999年   159篇
  1998年   137篇
  1997年   127篇
  1996年   109篇
  1995年   77篇
  1994年   78篇
  1993年   78篇
  1992年   72篇
  1991年   46篇
  1990年   40篇
  1989年   22篇
  1988年   17篇
  1987年   18篇
  1986年   21篇
  1985年   36篇
  1984年   27篇
  1983年   21篇
  1982年   25篇
  1981年   15篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1976年   1篇
排序方式: 共有6744条查询结果,搜索用时 15 毫秒
1.
The variability of rainfall-dependent streamflow at catchment scale modulates many ecosystem processes in wet temperate forests. Runoff in small mountain catchments is characterized by a quick response to rainfall pulses which affects biogeochemical fluxes to all downstream systems. In wet-temperate climates, water erosion is the most important natural factor driving downstream soil and nutrient losses from upland ecosystems. Most hydrochemical studies have focused on water flux measurements at hourly scales, along with weekly or monthly samples for water chemistry. Here, we assessed how water and element flows from broad-leaved, evergreen forested catchments in southwestern South America, are influenced by different successional stages, quantifying runoff, sediment transport and nutrient fluxes during hourly rainfall events of different intensities. Hydrograph comparisons among different successional stages indicated that forested catchments differed in their responses to high intensity rainfall, with greater runoff in areas covered by secondary forests (SF), compared to old-growth forest cover (OG) and dense scrub vegetation (CH). Further, throughfall water was greatly nutrient enriched for all forest types. Suspended sediment loads varied between successional stages. SF catchments exported 455 kg of sediments per ha, followed by OG with 91 kg/ha and CH with 14 kg/ha, corresponding to 11 rainfall events measured from December 2013 to April 2014. Total nitrogen (TN) and phosphorus (TP) concentrations in stream water also varied with rainfall intensity. In seven rainfall events sampled during the study period, CH catchments exported less nutrients (46 kg/ha TN and 7 kg/ha TP) than SF catchments (718 kg/ha TN and 107 kg/ha TP), while OG catchments exported intermediate sediment loads (201 kg/ha TN and 23 kg/ha TP). Further, we found significant effects of successional stage attributes (vegetation structure and soil physical properties) and catchment morphometry on runoff and sediment concentrations, and greater nutrients retention in OG and CH catchments. We conclude that in these southern hemisphere, broad-leaved evergreen temperate forests, hydrological processes are driven by multiple interacting phenomena, including climate, vegetation, soils, topography, and disturbance history.  相似文献   
2.
Water quality is often highly variable both in space and time, which poses challenges for modelling the more extreme concentrations. This study developed an alternative approach to predicting water quality quantiles at individual locations. We focused on river water quality data that were collected over 25 years, at 102 catchments across the State of Victoria, Australia. We analysed and modelled spatial patterns of the 10th, 25th, 50th, 75th and 90th percentiles of the concentrations of sediments, nutrients and salt, with six common constituents: total suspended solids (TSS), total phosphorus (TP), filterable reactive phosphorus (FRP), total Kjeldahl nitrogen (TKN), nitrate-nitrite (NOx), and electrical conductivity (EC). To predict the spatial variation of each quantile for each constituent, we developed statistical regression models and exhaustively searched through 50 catchment characteristics to identify the best set of predictors for that quantile. The models predict the spatial variation in individual quantiles of TSS, TKN and EC well (66%–96% spatial variation explained), while those for TP, FRP and NOx have lower performance (37%–73% spatial variation explained). The most common factors that influence the spatial variations of the different constituents and quantiles are: annual temperature, percentage of cropping land area in catchment and channel slope. The statistical models developed can be used to predict how low- and high-concentration quantiles change with landscape characteristics, and thus provide a useful tool for catchment managers to inform planning and policy making with changing climate and land use conditions.  相似文献   
3.
1 IntroductionBacteriaandtheiractivitiesplayanimportantroleintheelementalbiogeochemicalcyclesandenergytransformingintheocean (Zhenetal.1 997) .DortchandPackard(1 989) proposedthatfoodwebsintheeutrophicwatersaredominatedbythebiomassofprimaryproducerswhilefoodwebsintheoligotrophicwatersaredominatedbythebiomassofmicrobes.Heterotrophicbacteriahadbeenshowntoplayanimportantroleinthedecompositionoflarge ,rapidlysinkingorganicparticleswithinandbelowtheeuphot iczone ,andfurthertoaffecttheelementaldyn…  相似文献   
4.
In the upper Chesapeake Bay (Maryland, U.S.A.) field surveys were conducted at 18 multiple longshore sand bar sites. The multiple bar systems were found in water depths less than approximately 2 m (mean sea level), and exhibited mild bottom slopes of 0·0052 or less. The number of bars composing each system ranged from four to 17 and the spacing between the crests typically increased in the offshore direction, ranging from 12 to 70 m. Bar height also typically increased with distance offshore and ranged from 0·03 to 0·61 m. A grain size analysis of crest and trough sediment did not reveal any significant differences and the sediment was categorized as ‘fine sand’. A review of the literature data indicated that the Chesapeake Bay multiple bars possessed similar characteristics to those found in Gelding Bay (Baltic Sea); similarities in fetch, wave height and tidal range between the two bays may account for this finding. The surf-scaling parameter indicated that the multiple bar systems were extremely dissipative with regard to wave energy, and wave height appeared to be an important factor in controlling bar spacing and bar height. A multiple wave break point hypothesis was discussed as a possible mechanism for the formation of Chesapeake Bay multiple longshore bars, and limited observational evidence appeared to support such a mechanism.  相似文献   
5.
The Cumberland Basin, a 118 km2 estuary at the head of the Bay of Fundy which has an average tidal range of about 11m, contains large tracts of salt marsh (15% of the area below highest high water). Low marsh (below about 0·9 m above mean high water) is composed almost exclusively of Spartina alterniflora while the vegetation on high marsh is more diverse but dominated by Spartina patens. Because of its higher elevation, high marsh is flooded infrequently for short periods by only extreme high tides. Low marsh is inundated much more frequently by water as much as 4m deep for periods as long as 4 h per tide. Temporal variability in the occurrence of extreme tides influences the flooding frequency of high marsh for any given month and year. Using a modification of Smalley's method, the mean annual net aerial primary production (NAPP) of low and high marsh is estimated to be 272 and 172 g C m?2, respectively. Vegetation turnover times average 1·0 and 2·0 y for low and high marsh, respectively. Because of abundant tidal energy, much of the low marsh production appears to be exported and distributed widely about the estuary. Since high levels of turbidity suppress phytoplankton production, salt marshes produce approximately half of the carbon fixed photosynthetically in the Cumberland Basin. It is concluded that salt marshes play a major ecological role in the Cumberland Basin.  相似文献   
6.
Replicate portions of a Delaware salt marsh were enclosed in cylindrical microcosms and exposed to elevated levels of inorganic arsenic (arsenate). All biotic and abiotic components in dosed cylinders rapidly incorporated arsenic. Spartina blades showed the greatest arsenic enrichment, with dosed plants incorporating arsenic concentrations an order of magnitude higher than controls. Spartina detritus and sediments also exhibited greatly elevated arsenic concentrations. Virtually all of the arsenic was incorporated into plant tissue or strongly sorbed to cell surfaces. Thus, elevated arsenic concentrations in estuarine waters will be reflected in living and non-living components of a salt marsh ecosystem, implying that increased arsenic will be available to organisms within the marsh ecosystem.  相似文献   
7.
The authors analyzed the data collected in the Ecological Station Jiaozhou Bay from May 1991 to November 1994, including 12 seasonal investigations, to determine the characteristics, dynamic cycles and variation trends of the silicate in the bay. The results indicated that the rivers around Jiaozhou Bay provided abundant supply of silicate to the bay. The silicate concentration there depended on river flow variation. The horizontal variation of silicate concentration on the transect showed that the silicate concentration decreased with distance from shorelines. The vertical variation of it showed that silicate sank and deposited on the sea bottom by phytoplankton uptake and death, and zooplankton excretion. In this way, silicon would endlessly be transferred from terrestrial sources to the sea bottom. The silicon took up by phytoplankton and by other biogeochemical processes led to insufficient silicon supply for phytoplankton growth. In this paper, a 2D dynamic model of river flow versus silicate concentration was established by which silicate concentrations of 0.028–0.062 μmol/L in seawater was yielded by inputting certain seasonal unit river flows (m3/s), or in other words, the silicate supply rate; and when the unit river flow was set to zero, meaning no river input, the silicate concentrations were between 0.05–0.69 μmol/L in the bay. In terms of the silicate supply rate, Jiaozhou Bay was divided into three parts. The division shows a given river flow could generate several different silicon levels in corresponding regions, so as to the silicon-limitation levels to the phytoplankton in these regions. Another dynamic model of river flow versus primary production was set up by which the phytoplankton primary production of 5.21–15.55 (mgC/m2·d)/(m3/s) were obtained in our case at unit river flow values via silicate concentration or primary production conversion rate. Similarly, the values of primary production of 121.98–195.33 (mgC/m2·d) were achieved at zero unit river flow condition. A primary production conversion rate reflects the sensitivity to silicon depletion so as to different phytoplankton primary production and silicon requirements by different phytoplankton assemblages in different marine areas. In addition, the authors differentiated two equations (Eqs. 1 and 2) in the models to obtain the river flow variation that determines the silicate concentration variation, and in turn, the variation of primary production. These results proved further that nutrient silicon is a limiting factor for phytoplankton growth. This study was funded by NSFC (No. 40036010), and the Director's Fund of the Beihai Sea Monitoring Center, the State Oceanic Administration.  相似文献   
8.
Autotrophic biomass and productivity as well as nutrient distributions and phytoplankton cell populations in the James River estuary, Virginia, were quantified both spatially and temporally over a 17-month period. Emphasis was placed on the very low salinity region of the estuary in order to gain information on the fate of freshwater phytoplankters. Differing amounts of freshwater plant biomass are advected into the estuary as living material, DOC or POC and the demonstrated variability of this input must play an important role in marine biogeochemical cycling.Late summer and fall maxima in both chlorophyll a and the photosynthetic production of particulate organic carbon in very low salinity regions were inversely correlated with river discharge.During periods of low river discharge greater than 50% of the chlorophyll a biomass measured at 0‰ disappeared within a narrow range of salinity (0–2‰). Cell enumeration data suggest that species introduced from the freshwater end-member tend to comprise the bulk of the biomass removed. Confounding factors, which may contribute to the regulation of both the abundance and species of phytoplankters mid-river, include the flocculation of colloidal material with phytoplankton cells, the presence of the turbidity maximum and the growth of endemic phytoplankton populations.An inverse relationship exists between the phytoplankton abundance in very low salinity waters and the abundance of biomass measured in the lower portion of the river (estuary). Thus, autotrophic production in the fresh and very low salinity areas may indirectly regulate the onset on the spring bloom in the estuary by controlling the amount of nutrients available.  相似文献   
9.
Berry Head, a limestone headland in Torbay, southwest England, exhibits a series of subaerial marine erosion platforms and raised beaches spanning an altitude range of 97 m. Solution caves on the headland show preferred horizontal development at elevations that are correlated with the marine erosion platforms, and developed in a marine/freshwater mixing zone whose position was controlled by high sea-level still-stands. Corbridge Cave in Berry Head Quarry lies below the raised beaches in Torbay, and contains evidence of three marine transgressions in the form of fine-grained marine ponding deposits with a marine microfauna. Uranium-series dating of intercalated speleothems indicates that a transgression during oxygen isotope stage 5e reached an elevation of 5.8 m OD, while an earlier transgression (probably during stage 7) reached at least 7.2 m OD. These findings are used to constrain possible interpretations of the aminostratigraphy of raised beaches in Southwest Britain, and a correlation of the Unnamed Stage of Bowen, Sykes, Reeves, Miller, Andrews, Brew and Hare with oxygen isotope stage 5e is proposed.  相似文献   
10.
A new analysis of all 346 published 14C dated Holocene alluvial units in Britain offers a unique insight into the regional impacts of global change and shows how surprisingly sensitive British rivers have been to relatively modest but repeated changes in climate. Fourteen major but probably brief periods of flooding are identified bracketed within the periods 400–1070, 1940–3940, 7520–8100 and at ca. 10 420 cal. yr BP. There is a strong correspondence between climatic deteriorations inferred from mire wet shifts and major periods of flooding, especially at ca. 8000 cal. yr BP and since ca. 4000 cal. yr BP. The unusually long and complete British record also demonstrates that alterations in land cover have resulted in a step change in river basin sensitivity to variations in climate. This has very important implications for assessing and mitigating the impact of increasing severe flooding. In small and medium‐sized river basins land use is likely to play a key role in either moderating or amplifying the climatic signal. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号