首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
地质学   6篇
海洋学   1篇
  2014年   1篇
  2011年   1篇
  2009年   1篇
  2007年   1篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
排序方式: 共有7条查询结果,搜索用时 26 毫秒
1
1.
2.
The Napo phosphorites were deposited at the edge of a stable marine shelf during the Upper Cretaceous (Coniacian) oceanic anoxic event (OAE 3) at the transition from bioclastic limestone to organic-rich shale facies. Phosphogenesis was triggered in the shelf margin environment by a number of factors including strong upwelling currents, high biological activity, plankton blooms, and large amounts of organic matter production and subsequent accumulation. Dissolved phosphate levels increased in the sediment from a combination of anoxic conditions and microbial activity. Once dissolved phosphate concentrations were high enough, apatite began to form around nucleic sites including mineral grains, shells, wood fragments, and foraminifera tests forming peloidal fluorine rich carbonate fluoroapatite (francolite). As the peloids formed, sedimentation continued and dissolved phosphate concentrations diminished. A period of minor winnowing ensued, and as dissolved phosphate concentrations remained low, shale layers were deposited separating the various phosphate layers.  相似文献   
3.
Vast reserves of marine minerals are known to occur within the Mexican Exclusive Economic Zone. These reserves include: (1) heavy mineral placers rich in titanium and iron along the coast of San Antonio del Mar, Baja California and the southern States of Oaxaca and Guerrero; (2) phosphorites, which represent the only source for superphosphate fertilizers along the Pacific coast off the Baja California peninsula and the Gulf of Tehuantepec; and (3) manganese oxide deposits in nodule and crusts located adjacent to the Clarion-Clipperton Zone and containing high concentrations of Cu + Ni + Co (up to 1.9%), which are essential for the steel and super-alloy industries. Few but important efforts toward surveying these deposits have been carried out by Mexican and international researchers. Relevant data generated by these investigations are reviewed here and put together in a single document. Adequate knowledge of Mexican mineral resources is essential for the development of management strategies when offshore mining starts during this century. Thus, the review discusses the economics inherent to ocean mining in Mexico, setting baselines for future exploration and development activities in the Mexican Exclusive Economic Zone.  相似文献   
4.
Oxygen and carbon isotopes in Jordanian phosphorites and associated fossils   总被引:1,自引:0,他引:1  
Stable isotopes have proven to be efficient tools for paleoenvironmental analysis and interpretation of paleotemperature. Oxygen and carbon isotopes were analyzed in carbonate flourapatite (francolite), oyster shells, tests of foraminifera and ostracods from the Phosphorite Unit throughout Jordan.Isotopic analysis showed δ18O to be enriched in authigenic francolite in Upper Cretaceous in NW Jordan, indicating lower temperatures, a deeper depositional environment and lower salinity than Central Jordan. In Central Jordan, the local basin of Hafira shows enrichment of δ18O indicating a deeper depositional environment than shallower highs in Mutarammil and Wadi El-Hasa. The δ13C shows that the depositional environment was oxic to suboxic and may have reached the suboxic to anoxic interface in the deeper environment in NW Jordan.δ18O values in tests of foraminifera and ostracods are similar to δ18O values of authigenic phosphate, which is enriched in NW Jordan, indicating lower temperature, lower salinity and a deeper environment than Central Jordan. In Central Jordan, δ13C shows more depletion in the Sultani section due to land derived organic carbon (food web supply) carried by terrestrial water draining to the sea.The δ18O in oyster shells show an upward enrichment in the Wadi El-Hasa section, which indicate an increase of intense upwelling, enrichment of nutrients, development of productivity and growth of oyster buildups. Meanwhile, Hafira shows enrichment of δ18O and lower temperature, in agreement with foraminifera and ostracods. The two samples of oysters from SE Jordan, although affected by diagenesis, show heavier oxygen to the north, indicating a deeper water environment and lower salinity in the same basin.  相似文献   
5.
Upper Cretaceous Phosphorites from different localities in Egypt were analyzed for their rare earth elements (REEs) contents and sulfur and strontium isotopes to examine the effect of depositional conditions versus diagenesis on these parameters.The negative Ce and Eu anomalies of the study phosphorites suggest its formation under reducing conditions. However, chondrite-normalized REEs patterns show relative enrichments of LREEs over the HREEs, which is obviously different from the seawater REEs pattern suggesting post-depositional modifications on the REEs distributions during diagenesis. The difference in the REEs concentrations and Ce anomalies among the study localities as well as the similarity between the REEs patterns of these phosphorites and associated black shales might support this interpretation.The concentration of structural SO42− (0.6-3.7%) and their δ34S values (+0.5 to -20‰) in the upper Cretaceous phosphorites in Egypt suggest the formation of these phosphorites in the zone of sulfate reduction. On the other hand, the sulfur isotopes in the pyrite from the study phosphorites (δ34S = +4.6‰ − 23‰ with an average of −7.7‰) are attributed to the influence of seawater from which pyrite was formed during diagenesis. The difference between the δ34S values in the phosphorites (all are positive values) and those in the associated pyrite (mostly negative values) reflect an asymmetric sulfate and sulfide sulfur isotopic composition due to the formation of francolite (source of sulfate) and pyrite (source of sulfide) in different conditions and/or process.The 87Sr/86Sr values of the upper Cretaceous phosphorites in Egypt are very close to the marine values during the Campanian-Maastrichtian time and their average (0.707622) is more or less comparable to the average 87Sr/86Sr values of the Cretaceous-Eocene Tethyan phosphorites. This suggests no post-depositional alteration (i.e. diagenetic effect) on the Sr isotopic composition of these phosphorites.  相似文献   
6.
Nodules consisting of fluorapatite are concentrated as a discrete band in the polymetallic sulfide ore of the Gamsberg deposit in central Bushmanland, South Africa. Their shape, zonal features, and geochemistry, in particular rare earth element (REE) abundances, are similar to authigenic francolite concretions that precipitate during diagenesis in organic-rich muds. As a result, the apatite nodules are regarded as primary. The nodules have a strong lithostratigraphic control, occurring at the transition of siliciclastic-hosted pyrite–sphalerite–graphite mineralization to calc-silicate-hosted pyrrhotite–sphalerite mineralization. Mineralogical and chemical evidence indicates that this transition also corresponds to a paleo-redox boundary that separates sediments deposited under oxygen-deficient conditions from those that developed in a more oxygenated environment. The apatite nodules can morphologically and chemically clearly be distinguished from coarse apatite grains that occur in oxide-facies iron formations stratigraphically above the ore horizon. However, similar REE profiles and in particular positive Eu anomalies in both types of apatite are indicative of a close genetic relationship between the two units and favor a common hydrothermal origin of the P. The contrasting morphologies and chemical signatures of the two occurrences can rather be attributed to differences in behavior of the phosphates during precipitation within the contrasting host sediments (chemical versus fine-grained clastic). Taking modern phosphorites as an analogue, these results are used to postulate a genetic model for the deposition of the sulfide ore and associated iron formations. The model envisages differentiation of the depositional basin into oxygen-deficient basin facies hosting the sulfide ore and oxygenated shelf facies, which are composed of manganiferous iron formations. The intimate association of sedimentary apatite with base metal sulfides indicates that basin conditions were conducive to the precipitation of both phases. This relationship might act as a potential exploration guide in similar basins elsewhere.Editorial handling: E. Frimmel  相似文献   
7.
Facies analyses and a sequence stratigraphical framework with regional correlation of the upper Campanian phosphate province are presented, based on three main sections located in Egypt (Gebel Duwi and Abu Tartur sections) and north Jordan (Umm Qais section). Fifteen facies types were grouped into: phosphate (FT1–5), carbonate (FT6–11) and siliciclastic (FT12–15) facies associations. The main component of phosphate rocks is pellets in situ and common reworked biogenic debris, especially in the upper phosphate beds (e.g. fish teeth and bones), which along with abundant Thalassinoides burrows suggests that the skeletal material was the main source for phosphates in Egypt; in contrast the common authigenic phosphatic grains (pristine) in Jordan reflect an upwelling regime. Based on age assignment as well as stratigraphical position, the phosphorite beds show great similarity that may suggests a similar origin and proximity during the period of deposition of the Duwi Formation of the Red Sea coast of Egypt and its equivalent, the Al-Hisa Phosphorite Formation in Jordan, which represents an early transgressive system tract of a depositional sequence. On the Abu Tartur plateau, the presence of sandy pyritic phosphatic grainstone (FT1) and glauconitic quartz arenite (FT12) in the middle part of the studied section, along with the absence of chert facies (FT14), reflects a more shallow marine depositional environment with increased fluvial sediment supply compared to those along the Red Sea coast and north Jordan.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号