首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
地球物理   1篇
地质学   2篇
  2011年   1篇
  2007年   1篇
  1986年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Stratigraphic and chemical data from the ice core of an ‘anthropogenic palsa’ at Toolik Lake, Alaska, indicate that the mound formed as a consequence of hydrostatic pressure developed in an isolated hydrologic system within the active layer. Survey data for five palsas over a three-year period suggest that growth was essentially complete at the time of the initial survey; a net decrease of summit elevation is apparent in all five mounds, but complete degradation of the palsas would require several decades at observed rates. Because accurate field measurements of thermal and hydrologic evolution in such features are extremely difficult, simulation of the environmental conditions and events involved in palsa growth is an important supplement to field observation. Both analytic and finite-element models yield results that are in substantial agreement with inferences drawn from observational data.  相似文献   
2.
In this study, we documented the Holocene history of a peat plateau at the arctic tree line in northern Québec using stratigraphic and macrofossil analyses to highlight the effects of geomorphic setting in peatland development. Paludification of the site began about 6800 cal yr BP. From 6390 to 4120 cal yr BP, the peatland experienced a series of flooding events. The location of the peatland in a depression bounded by two small lakes likely explains its sensitivity to runoff. The proximity of a large hill bordering the peatland to the south possibly favored the inflow of mineral-laden water. The onset of permafrost aggradation in several parts of the peatland occurred after 3670 cal yr BP. Uplifting of the peatland surface caused by permafrost stopped the flooding. According to radiocarbon dating of the uppermost peat layers, permafrost distribution progressed from the east to the west of the peatland, indicating differential timing for the initiation of permafrost throughout the peatland. Most of the peatland was affected by permafrost growth during the Little Ice Age. Picea mariana macroremains at 6450 cal yr BP indicate that the species was present during the early stages of peatland development, which occurred soon after the sea regression.  相似文献   
3.
This review presents a synthesis of four decades of palsa studies based on field experiments and observations mainly in Fennoscandia, as well as laboratory measurements. Palsas are peat-covered mounds with a permanently frozen core; in Finnish Lapland, they range from 0.5 to 7 m in height and from 2 to 150 m in diameter. These small landforms are characteristic of the southern margin of the discontinuous permafrost zone. Palsa formation requires certain environmental conditions: long-lasting air temperature below 0°C, thin snow cover, and low summer precipitation. The development and persistence of their frozen core is sensitive to the physical properties of peat. The thermal conductivity of wet and frozen peat is high, and it decreases significantly as the peat dries and thaws. This affects the development of the active layer and makes its response to climate change complex. The insulating properties of dry peat during hot and dry summers moderate the thawing of the active layer on palsas. In contrast, humid and wet weather during the summer causes deep thawing and may destroy the frozen core of palsas. Ice layers in palsas have previously been interpreted as ice segregation features but because peat is not frost-susceptible, the ice layers are now reinterpreted as resulting from ice growth at the base of a frozen core that is effectively floating in a mire.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号