首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63篇
  免费   3篇
  国内免费   3篇
地球物理   12篇
地质学   41篇
自然地理   16篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2013年   3篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2008年   8篇
  2007年   3篇
  2006年   3篇
  2005年   1篇
  2004年   4篇
  2003年   15篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1990年   1篇
  1989年   1篇
  1988年   3篇
  1987年   2篇
  1986年   1篇
  1977年   1篇
排序方式: 共有69条查询结果,搜索用时 15 毫秒
1.
With the aim of obtaining Tertiary palaeomagnetic directions for the Adriatic Foreland of the Dinaric nappe system, we carried out a palaeomagnetic study on platform carbonates from stable Istria, from the northwestern and the Central Dalmatia segment of imbricated Adria. Despite the weak to very weak natural remanences of these rocks, we obtained tectonically useful palaeomagnetic directions for 25 sites from 20 localities. All exhibit westerly declinations, both before and after tilt correction. Concerning the age of the magnetizations, we conclude that five subhorizontal and magnetite bearing Eocene localities from stable Istria are likely to carry primary remanence, whereas three tilted and hematite-bearing ones were remagnetized. In the northwestern segment of imbricated Adria the cluster of the mean directions improved after tectonic correction indicating pre-tilting magnetization. In contrast, Maastrichtian–Eocene platform carbonates from Central Dalmatian were remagnetized in connection with the late Eocene–Oligocene deformation or Miocene hydrocarbon migration. Based on the appropriate site/locality means, we calculate mean palaeomagnetic directions for the above three areas and suggest an alternative interpretation of the data of Kissel et al. [J. Geophys. Res. 100 (1995) 14999] for the flysch of Central Dalmatia. The four area mean direction define a regional palaeomagnetic direction of Dec=336°, Inc=+52°, k=107, α95=9°. From these data we conclude that stable Istria, in close coordination with imbricated Adria, must have rotated by 30° counterclockwise in the Tertiary, relative to Africa and stable Europe. We suggest that the latest Miocene–early Pliocene counterclockwise rotations observed in northwestern Croatia and northeastern Slovenia were driven by that of the Adriatic Foreland, i.e. the rotation of the latter took place between 6 and 4 Ma.  相似文献   
2.
The Banded Hematite Jasper Formation within the Iron Ore Supergroup of the Singhbhum Craton in eastern India comprises fine alternating layers of jasper and specularite. It was deposited at 3000 Ma and deformed by a mobile episode at 2700 Ma. Hematite pigment (<1 μm) mixed with cryptocrystalline silica and specularite (> 10 μm) is chiefly responsible for red to brown rhythmic bands in the hematite jasper facies although thermomagnetic study also shows that minor amounts (1–2%) of magnetite are present. Palaeomagnetic study identifies a dual polarity remanence resident in hematite (D/I = 283/60°, α95 = 12°) which predates deformation. Studies of the fabric of magnetic susceptibility and rock magnetic results suggest a diagenetic origin for this magnetisation with the hematite formed from oxidation of primary magnetite. The palaeopole (32°E, 24°N, dp/dm = 14/18°) records the earliest post-metamorphic magnetisation event in the Orissa Craton. A minimum apparent polar wander motion of the Orissa-Singhbhum craton of through 80° is identified during Late Archaean times (2900-2600 Ma).  相似文献   
3.
In southern Turkey ongoing differential impingement of Arabia into the weak Anatolian collisional collage resulting from subduction of the Neotethyan Ocean has produced one of the most complex crustal interactions along the Alpine–Himalayan Orogen. Several major transforms with disputed motions, including the northward extension of the Dead Sea Fault Zone (DSFZ), meet in this region. To evaluate neotectonic motion on the Amanos and East Hatay fault zones considered to be northward extensions of the DSFZ, the palaeomagnetism of volcanic fields in the Karasu Rift between these faults has been studied. Remanence carriers are low-Ti magnetites and all except 5 of 51 basalt lavas have normal polarity. Morphological, polarity and K–Ar evidence show that rift formation occurred largely during the Brunhes chron with volcanism concentrated at 0.66–0.35 Ma and a subsidiary episode at 0.25–0.05. Forty-four units of normal polarity yield a mean of D/I=8.8°/54.7° with inclination identical to the present-day field and declination rotated clockwise by 8.8±4.0°. Within the 15-km-wide Hassa sector of the Karasu Rift, the volcanic activity is concentrated between the Amanos and East Hatay faults, both with left lateral motions, which have rotated blocks bounded by NW–SE cross faults in a clockwise sense as the Arabian Block has moved northwestwards. An average lava age of 0.5 Ma yields a minimum cumulative slip rate on the system bounding faults of 0.46 cm/year according with the rate deduced from the Africa–Arabia Euler vector and reduced rates of slip on the southern extension of the DSFZ during Plio-Quaternary times. Estimates deduced from offsets of dated lavas flows and morphological features on the Amanos Fault Zone [Tectonophysics 344 (2002) 207] are lower (0.09–0.18 cm/year) probably because they are limited to surface fault breaks and do not embrace the seismogenic crust.Results of this study suggest that most strike slip on the DSFZ is taken up by the Amanos–East Hatay–Afrin fault array in southern Turkey. Comparable estimates of Quaternary slip rate are identified on other faults meeting at an unstable FFF junction (DSFZ, East Anatolian Fault Zone, Karatas Fault Zone). A deceleration in slip rate across the DSFZ and its northward continuation during Plio-Quaternary times correlates with reorganization of the tectonic regime during the last 1–3 Ma including tectonic escape within Anatolia, establishment of the North and East Anatolian Fault Zones bounding the Anatolian collage in mid–late Pliocene times, a contemporaneous transition from transpression to transtension and concentration of all basaltic magmatism in this region within the last 1 Ma.  相似文献   
4.
5.
王恒  杨振宇 《地球物理学报》2019,62(5):1789-1808

印度-欧亚板块碰撞以来青藏高原内部及其周缘地区经历了复杂的构造演化,复杂构造变形区的复合构造使得古地磁的数据解释究竟代表区域的构造旋转还是只能反映局部的构造变形一直是备受关注的问题.本文通过采集川滇地块西缘渔泡江断裂东侧三岔河地区白垩纪红层古地磁样品,揭示采样区差异性旋转并探讨川滇地块西部自中新世以来的构造演化规律.前人的地质调查表明川滇地块渔泡江断裂东侧上白垩统赵家店组地层发育倾伏褶皱.三岔河剖面以三岔河镇为界分为南北两段,三岔河南段剖面高温剩磁分量平均方向在倾斜校正后Ds=29.3°,Is=45.7°,ks=54.3,α95=6.6°,倾伏地层产状校正后Ds=30.6°,Is=46.6°,ks=69.3,α95=5.8°;而三岔河北侧剖面高温剩磁分量平均方向在倾斜校正后Ds=350.4°,Is=42.1°,ks=69.4,α95=9.2°,倾伏地层产状校正后Ds=347.4°,Is=41.9°,ks=96.6,α95=7.8°;两组高温剩磁分量均通过了褶皱检验,表明其获得于褶皱形成之前.相对于东亚稳定区80 Ma古地磁极,三岔河南侧剖面发生了20.5°±4.8°的顺时针构造旋转量,与楚雄盆地核部之间不存在差异性旋转;但三岔河镇以北剖面却发生了22.7°±6.6°的逆时针旋转.综合分析川滇地块内部的古地磁数据表明自中新世以来川滇地块南部楚雄盆地经历了约20°的顺时针构造旋转,而三岔河镇北侧经历了约20°逆时针旋转.进一步分析表明三岔河北侧剖面相对于南侧剖面经历了约40°的逆时针旋转,可能由于研究区的滑脱构造导致岩石薄弱层拆离滑脱所引起.

  相似文献   
6.
A detailed palaeomagnetic and magnetostratigraphic study of the Permian–Triassic Siberian Trap Basalts (STB) in the Noril'sk and Abagalakh regions in northwest Central Siberia is presented. Thermal (TH) and alternating field (AF) demagnetisation techniques have been used and yielded characteristic magnetisation directions. The natural remanent magnetisation of both surface and subsurface samples is characterised by a single component in most cases. Occasionally, a viscous overprint can be identified which is easily removed by TH or AF demagnetisation.The resulting average mean direction after tectonic correction for the 95 flows sampled in outcrops is D=93.7°, I=74.7° with k=19 and α95=3.3°. The corresponding pole position is 56.2°N, 146.0°E.Unoriented samples from four boreholes cores in the same regions have also been studied. They confirm the reversed–normal succession found in outcrops. The fact that only one reversal of the Earth's magnetic field has been recorded in the traps can be taken as evidence for a rather short time span for the major eruptive episode in this region. However, there is evidence elsewhere that the whole volcanic activity associated with the emplacement of the STB was much longer and lasted several million years.  相似文献   
7.
中国黄土与红色粘土记录的地磁极性界限及地质意义   总被引:13,自引:0,他引:13       下载免费PDF全文
本文报道由蓝田、陕县、洛川、西峰、平凉、兰州及靖远等剖面获得的古地磁研究结果.主要结论为:1.中国黄土剖面记录了Brunhes正极性带与Matuyama负极性带,Brunhes/Matuyama极性转换过程位于第8层黄土(L8).在段家坡黄土剖面该转换过程对应的地层厚度为0.375m,持续时间约6000a.转换过程由3次极性变化构成,每次经历的时间约为400a.2.Jaramillo正极性亚带(J)位于标志层L9至L15之间,大约S10-S13位置.3.Olduvai正极性亚带(O)对应的地层为S27-S334.Reunion正极性亚带(R)由两部分组成,在蓝田段家坡黄土剖面分别位于L36和S385.Matuyama负极性带与Gauss正极性带界限(M/Ga)位于黄土和红色粘土交界处,中国黄土的底界年龄为2.48Ma左右.黄土与红色粘土为整合接触关系.6.黄土下伏的红色粘土记录了Gauss正极性带,Gilbert负极性带和古地磁年表编号5(Epoch5).  相似文献   
8.
An interdisciplinary study of a small sedimentary basin at Neumark Nord 2 (NN2), Germany, has yielded a high-resolution record of the palaeomagnetic Blake Event, which we are able to place at the early part of the last interglacial pollen sequence documented from the same section. We use this data to calculate the duration of this stratigraphically important event at 3400 ± 350 yr. More importantly, the Neumark Nord 2 data enables precise terrestrial-marine correlation for the Eemian stage in central Europe. This shows a remarkably large time lag of ca. 5000 yr between the MIS 5e ‘peak’ in the marine record and the start of the last interglacial in this region.  相似文献   
9.
A detailed palaeomagnetic study of Cretaceous age volcanic and sedimentary arc rocks from central Cuba has been carried out. Samples from 32 sites (12 localities) were subjected to detailed demagnetisation experiments. Nineteen sites from the Los Paso, Mataguá, Provincial and Cabaiguán Formations yielded high unblocking temperature, dual polarity directions of magnetisation which pass the fold tests with confidence levels of 95% or more and are considered to be primary in origin. The palaeomagnetic inclinations are equivalent to palaeolatitudes of 9°N for the Aptian, 18°N for the Albian. A synfolding remanence identified in 5 sites from the younger Hilario Formation indicates a late Cretaceous remagnetisation at a palaeolatitude of 16°N. Our results are in good agreement with previous palaeogeographic models and provide the first high quality palaeomagnetic data demonstrating the gradual northward movement of the Cretaceous Volcanic Arc throughout the Cretaceous. The declination values obtained all indicate significant and similar amounts of anticlockwise rotation from the oldest sequences studied through to the late Cretaceous remagnetisation. This rotation is most likely related to collision of the arc with the North American plate and transpressional strike slip movement along the northern margin of the Caribbean plate as it progressed eastwards into the large Proto-Caribbean basin.  相似文献   
10.
Extensive work on the palaeomagnetism of the Deccan traps by several workers has revealed only one reversal (normal-reverse-normal) of the geomagnetic field during the period of eruption of these flows. The scatter in the natural remanent magnetic directions of different flows in a sequence of these traps is rather large and it persists even after magnetic cleaning. Generally this large scatter of directions is attributed to the geomagnetic secular variation during formation of the traps. Recent studies of the magnetic properties of the trap samples indicate that the presence of multidomain magnetite in a lava sequence differs from locality to locality in the Deccan trap province and so the stability of their natural remanent magnetization. While these features can be clearly perceived, an understanding of the same seems to be quite difficult. However, it appears that part of the scatter in directions could be due to the alteration of the magnetic minerals in the Deccan traps and hence it would not be proper to relate the entire scatter to the secular variation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号