首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7739篇
  免费   968篇
  国内免费   1638篇
测绘学   1056篇
大气科学   1248篇
地球物理   1721篇
地质学   3359篇
海洋学   983篇
天文学   404篇
综合类   584篇
自然地理   990篇
  2024年   24篇
  2023年   74篇
  2022年   141篇
  2021年   190篇
  2020年   190篇
  2019年   268篇
  2018年   209篇
  2017年   287篇
  2016年   314篇
  2015年   364篇
  2014年   425篇
  2013年   510篇
  2012年   419篇
  2011年   461篇
  2010年   392篇
  2009年   485篇
  2008年   595篇
  2007年   578篇
  2006年   552篇
  2005年   479篇
  2004年   468篇
  2003年   430篇
  2002年   364篇
  2001年   299篇
  2000年   315篇
  1999年   257篇
  1998年   219篇
  1997年   205篇
  1996年   132篇
  1995年   132篇
  1994年   123篇
  1993年   116篇
  1992年   77篇
  1991年   45篇
  1990年   48篇
  1989年   28篇
  1988年   29篇
  1987年   18篇
  1986年   21篇
  1985年   22篇
  1984年   8篇
  1983年   4篇
  1981年   6篇
  1980年   9篇
  1974年   1篇
  1973年   1篇
  1954年   3篇
  1905年   1篇
  1900年   3篇
  1877年   1篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
1.
Two distinct age estimates for eclogite-facies metamorphism in the Sanbagawa belt have been proposed: (i) c.  120–110 Ma based on a zircon SHRIMP age for the Western Iratsu unit and (ii) c.  88–89 Ma based on a garnet–omphacite Lu–Hf isochron age from the Seba and Kotsu eclogite units. Despite the contrasting estimates of formation ages, petrological studies suggest the formation conditions of the Western Iratsu unit are indistinguishable from those of the other two units—all ∼20 kbar and 600–650 °C. Studies of the associated geological structures suggest the Seba and Western Iratsu units are parts of a larger semi-continuous eclogite unit. A combination of geochronological and petrological studies for the Western Iratsu eclogite offers a resolution to this discrepancy in age estimates. New Lu–Hf dating for the Western Iratsu eclogite yields an age of 115.9 ± 0.5 Ma that is compatible with the zircon SHRIMP age. However, petrological studies show that there was significant garnet growth in the Western Iratsu eclogite before eclogite facies metamorphism, and the early core growth is associated with a strong concentration of Lu. Pre-eclogite facies garnet (Grt1) includes epidote–amphibolite facies parageneses equilibrated at 550–650 °C and ∼10 kbar, and this is overgrown by prograde eclogite facies garnet (Grt2). The Lu–Hf age of c.  116 Ma is strongly skewed to the isotopic composition of Grt1 and is interpreted to reflect the age of the pre-eclogite phase. The considerable time gap ( c.  27 Myr) between the two Lu–Hf ages suggests they may be related to separate tectonic events or distinct phases in the evolution of the Sanbagawa subduction zone.  相似文献   
2.
In this work, the factors controlling the formation and preservation of high-pressure mineral assemblages in the metamorphosed orthopyroxene-bearing metagranitoids of the Sandmata Complex, Aravalli-Delhi Mobile Belt (ADMB), northwestern India have been modelled. The rocks range in composition from farsundite through quartz mangerite to opdalite, and with varying K2O, Ca/(Ca + Na)rock and FeOtot + MgO contents. A two stage metamorphic evolution has been recorded in these rocks.
An early hydration event stabilized biotite with or without epidote at the expense of magmatic orthopyroxene and plagioclase. Subsequent high-pressure granulite facies metamorphism (∼15 kbar, ∼800 °C) of these hydrated rocks produced two rock types with contrasting mineralogy and textures. In the non-migmatitic metagranitoids, spectacular garnet ± K-feldspar ± quartz corona was formed around reacting biotite, plagioclase, quartz and/or pyroxene. In contrast, biotite ± epidote melting produced migmatites, containing porphyroblastic garnet incongruent solids and leucosomes.
Applying NCKFMASHTO T–M (H2O) and P–T pseudosection modelling techniques, it is demonstrated that the differential response of these magmatic rocks to high-pressure metamorphism is primarily controlled by the scale of initial hydration. Rocks, which were pervasively hydrated, produced garnetiferous migmatites, while for limited hydration, the same metamorphism formed sub-solidus garnet-bearing coronae. Based on the sequence of mineral assemblage evolution and the mineral compositional zoning features in the two metagranitoids, a clockwise metamorphic P–T path is constrained for the high-pressure metamorphic event. The finding has major implications in formulating geodynamic model of crustal amalgamation in the ADMB.  相似文献   
3.
对20个氯代苯酚类化合物进行了CNDO/2量子化学计算,讨论了化合物电子结构与其对水生物翻车鱼(Bluegill)、花鳉鱼(Guppy)、和虾(Shrimp)半致死量之间的关系,分别获得了表示其构效关系的三个线性方程,它们的显著性均远高于α=0.01水平。结果表明:氯代苯酚化合物苯环上碳原子的兀电荷之和(∑Qπ_R)越大苯环上碳原子的净电荷之和(∑Q_R)越大,或LUMO轨道能(E_(LUMO))越低,均使化合物对Bluegill和Guppy水生物的毒性增大;而化合物苯环上羟基邻位的碳原子的兀电荷布居(P_3)越大,同时HOMO轨道能E_(HOMO)越高,则化合物对Shrimp毒性也越大。据此,可预测氯代苯酚类化合物对上述三种水生物的毒性。  相似文献   
4.
Abstract Petrological, oxygen isotope and 40Ar/39Ar studies were used to constrain the Tertiary metamorphic evolution of the lower tectonic unit of the Cyclades on Tinos. Polyphase high-pressure metamorphism reached pressures in excess of 15 kbar, based on measurements of the Si content in potassic white mica. Temperatures of 450–500° C at the thermal peak of high-pressure metamorphism were estimated from critical metamorphic assemblages, the validity of which is confirmed by a quartz–magnetite oxygen isotope temperature of 470° C. Some 40Ar/39Ar spectra of white mica give plateau ages of 44–40 Ma that are considered to represent dynamic recrystallization under peak or slightly post-peak high-pressure metamorphic conditions. Early stages in the prograde high-pressure evolution may be documented by older apparent ages in the high-temperature steps of some spectra. Eclogite to epidote blueschist facies mineralogies were partially or totally replaced by retrograde greenschist facies assemblages during exhumation. Oxygen isotope thermometry of four quartz–magnetite pairs from greenschist samples gives temperatures of 440–470° C which cannot be distinguished from those deduced for the high-pressure event. The exhumation and overprint is documented by decreasing ages of 32–28 Ma in some greenschists and late-stage blueschist rocks, and ages of 30–20 Ma in the lower temperature steps of the Ar release patterns of blueschist micas. Almost flat parts of Ar–Ar release spectra of some greenschist micas gave ages of 23–21 Ma which are assumed to represent incomplete resetting caused by a renewed prograde phase of greenschist metamorphism. Oxygen isotope compositions of blueschist and greenschist facies minerals show no evidence for the infiltration of a δ18O-enriched fluid. Rather, the compositions indicate that fluid to rock ratios were very low, the isotopic compositions being primarily controlled by those of the protolith rocks. We assume that the fundamental control catalysing the transformation of blueschists into greenschists and the associated resetting of their isotopic systems was the selective infiltration of metamorphic fluid. A quartz–magnetite sample from a contact metamorphic skarn, taken near the Miocene monzogranite of Tinos, gave an oxygen isotope temperature of 555° C and calculated water composition of 9.1%. The value of δ18O obtained from this water is consistent with a primary magmatic fluid, but is lower than that of fluids associated with the greenschist overprint, which indicates that the latter event cannot be directly related to the monozogranite intrusion.  相似文献   
5.
Abstract Eclogites are distributed for more than 500 km along a major tectonic boundary between the Sino-Korean and Yangtze cratons in central and eastern China. These eclogites usually have high-P assemblages including omphacite + kyanite and/or coesite (or its pseudomorph), and form a high-P eclogite terrane. They occur as isolated lenses or blocks 10 cm to 300 m long in gneisses (Type I), serpentinized garnet peridotites (Type II) and marbles (Type III). Type I eclogites were formed by prograde metamorphism, and their primary metamorphic mineral assemblage consists mainly of garnet [pyrope (Prp) = 15–40 mol%], omphacite [jadeite (Jd) = 34–64 mol%], pargasitic amphibole, kyanite, phengitic muscovite, zoisite, an SiO2 phase, apatite, rutile and zircon. Type II eclogites characteristically contain no SiO2 phase, and are divided into prograde eclogites and mantle-derived eclogites. The prograde eclogites of Type II are petrographically similar to Type I eclogites. The mantle-derived eclogites have high MgO/(FeO + Fe2O3) and Cr2O3 compositions in bulk rock and minerals, and consist mainly of pyrope-rich garnet (Prp = 48–60 mol%), sodic augite (Jd = 10–27 mol%) and rutile. Type III eclogites have an unusual mineral assemblage of grossular-rich (Grs = 57 mol%) garnet + omphacite (Jd = 30–34 mol%) + pargasite + rutile. Pargasitic and taramitic amphiboles, calcic plagioclase (An68), epidote, zoisite, K-feldspar and paragonite occur as inclusions in garnet and omphacite in the prograde eclogites. This suggests that the prograde eclogites were formed by recrystallization of epidote amphibolite and/or amphibolite facies rocks with near-isothermal compression reflecting crustal thickening during continent–continent collision of late Proterozoic age. Equilibrium conditions of the prograde eclogites range from P > 26 kbar and T= 500–750°C in the western part to P > 28 kbar and T= 810–880°C in the eastern part of the high-P eclogite terrane. The prograde eclogites in the eastern part are considered to have been derived from a deeper position than those in the western part. Subsequent reactions, manifested by (1) narrow rims of sodic plagioclase or paragonite on kyanite and (2) symplectites between omphacite and quartz are interpreted as an effect of near-isothermal decompression during the retrograde stage. The conditions at which symplectites re-equilibrated tend to increase from west (P < 10 kbar and T < 580°C) to east (P > 9 kbar and T > 680°C). Equilibrium temperatures of Type II mantle-derived eclogites and Type III eclogite are 730–750°C and 680°C, respectively.  相似文献   
6.
Based on the Germany Koldwey Station's 1994-2003 conventional observation hourly data, this paper conducts a statistical analysis on the short-term climate characteristics for an arctic tundra region (Ny-(A)lesund island) where our first arctic expedition station (Huanghe Station) was located. Affected by the North Atlantic warming current, this area has a humid temperate climate, and the air temperature at Ny-(A)lesund rose above 0 ℃ even during deep winter season during our research period. The wind speed in this area was low and appeared most at southeast direction. We find that the temperature at Ny-(A)lesund rose in the faster rate (0.68 ℃/10 a) than those at the whole Arctic area. Compared with the floating ices where our expedition conducted in the Arctic, Ny-(A)lesund was warmer and more humid and had lower wind speed. Comparison of the near surface air temperature derived by NCEP/NCAR reanalysis to the conventional measurements conducted at the Koldwey site in Ny-(A)lesund area shows a good agreement for winter season and a significant difference for summer season.  相似文献   
7.
Mineral assemblages in Al2O3‐rich, SiO2‐ and K2O‐poor metapelitic rocks from the western Odenwald Crystalline Complex (Variscan Mid‐German Crystalline Rise, southern Germany) include corundum, spinel, cordierite, sillimanite, garnet and staurolite. Quartz is absent from almost all samples. Therefore, the applicability of conventional geothermobarometry is very limited or even impossible. Detailed petrographic investigation on selected samples permits inference of the sequence of appearance and disappearance of several mineral assemblages. The recognition of such partial re‐equilibration stages and their associated mineral assemblages, together with mineral stabilities predicted from KFMASH pseudosections, enables the determination of the pressure‐temperature (P–T) trajectories experienced by these rocks during the Variscan metamorphism. The rocks were metamorphosed under low‐P/high‐T conditions and underwent an anti‐clockwise P–T evolution. A pressure increase from about 2 kbar to 4 ± 0.5 kbar was accompanied by heating. Peak metamorphic conditions were reached at pressures of 4 ± 0.5 kbar and temperatures of at least 640 °C, probably even higher. The retrograde evolution is characterised by near‐isobaric cooling from ≥ 640 °C to approximately 550 °C. The rocks underwent the anti‐clockwise evolution in a subduction‐related magmatic arc setting. The close spatial association of the low‐P/high‐T rocks with recently discovered metabasic eclogites in the eastern part of the Odenwald Crystalline Complex may indicate a fossil paired metamorphic belt in the Central European Variscides.  相似文献   
8.
Chemical structure of Jurassic vitrinites isolated from the coals in basins in NW China have been checked using solid state 13C NMR and flash pyrolysis-GC/MS. Study shows some Jurassic collodetrinites are rich in aliphatic products in pyrolysates, consisting with the high amount of methylene carbon in 13C NMR spectra. In contrast, pyrolysates of Jurassic collotelinites are rich in phenols and alkylbenzenes. Also one Pennsylvanian and one Permian vitrinite selected from the Ordos basin, NW China have been checked for comparison. The proportion of aliphatics is low in pyrolysates, and aliphatic carbon peak in 13C NMR spectrum of Permian vitrinite is mostly composed of gas-prone carbons compared with collodetrinites in those Jurassic basins. But both pyrolysis and 13C NMR data shows the Pennsylvanian vitrinite is not only gas-prone but also oil-prone. Relatively high proportion of long chain aliphatic structure of some Jurassic vitrinite in Junggar, Turpan-Hami basins may be due to the contribution of liptodetrinites, which may be included during the formation of vitrinites. And it seems that suberinite is the most possible precursor of long chain aliphatics in the structure of Jurassic collodetrinite.  相似文献   
9.
Klauea historical summit lavas have a wide range in matrix 18OVSMOWvalues (4·9–5·6) with lower values in rockserupted following a major summit collapse or eruptive hiatus.In contrast, 18O values for olivines in most of these lavasare nearly constant (5·1 ± 0·1). The disequilibriumbetween matrix and olivine 18O values in many samples indicatesthat the lower matrix values were acquired by the magma afterolivine growth, probably just before or during eruption. BothMauna Loa and Klauea basement rocks are the likely sources ofthe contamination, based on O, Pb and Sr isotope data. However,the extent of crustal contamination of Klauea historical magmasis probably minor (< 12%, depending on the assumed contaminant)and it is superimposed on a longer-term, cyclic geochemicalvariation that reflects source heterogeneity. Klauea's heterogeneoussource, which is well represented by the historical summit lavas,probably has magma 18O values within the normal mid-ocean ridgebasalt mantle range (5·4–5·8) based on thenew olivine 18O values. KEY WORDS: Hawaii; Klauea; basalt; oxygen isotopes; crustal contamination  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号