首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   487篇
  免费   95篇
  国内免费   374篇
测绘学   2篇
大气科学   9篇
地球物理   63篇
地质学   812篇
海洋学   10篇
天文学   4篇
综合类   21篇
自然地理   35篇
  2024年   12篇
  2023年   19篇
  2022年   25篇
  2021年   31篇
  2020年   53篇
  2019年   48篇
  2018年   52篇
  2017年   47篇
  2016年   27篇
  2015年   33篇
  2014年   47篇
  2013年   43篇
  2012年   45篇
  2011年   28篇
  2010年   27篇
  2009年   46篇
  2008年   25篇
  2007年   40篇
  2006年   39篇
  2005年   19篇
  2004年   31篇
  2003年   23篇
  2002年   31篇
  2001年   16篇
  2000年   16篇
  1999年   23篇
  1998年   15篇
  1997年   19篇
  1996年   21篇
  1995年   10篇
  1994年   9篇
  1993年   10篇
  1992年   9篇
  1991年   5篇
  1990年   4篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
排序方式: 共有956条查询结果,搜索用时 15 毫秒
1.
甘新蒙北山地区成矿带划分和基本特征对比   总被引:3,自引:1,他引:2  
在对甘新蒙北山地区成矿地质背景和成矿在时空上的联系性等综合研究分析基础上,运用新理论、新认识,以板块构造单元划分为基础,将本区划分为3个Ⅲ级成矿带、11个Ⅳ级成矿带,并对Ⅲ级成矿带特征进行了阐述,以期为矿产勘查和地质大调查工作部署提供新的思路和依据。进一步就主要矿床(点)、构造单元、矿种、赋矿建造、控矿因素、成矿类型、成矿时代等方面进行了对比,认为各Ⅳ级成矿带在区域上具有相对稳定的展布范围,具有相同的构造环境和成矿条件、类似的矿种和成矿时代,存在一定的相似性、可比性,并且各成矿带具有一定的潜在找矿价值。  相似文献   
2.
An inescapable consequence of the metamorphism of greenstone belt sequences is the release of a large volume of metamorphic fluid of low salinity with chemical characteristics controlled by the mineral assemblages involved in the devolatilization reactions. For mafic and ultramafic sequences, the composition of fluids released at upper greenschist to lower amphibolite facies conditions for the necessary relatively hot geotherm corresponds to those inferred for greenstone gold deposits (XCO2= 0.2–0.3). This result follows from the calculation of mineral equilibria in the model system CaO–MgO–FeO–Al2O3–SiO2–H2O–CO2, using a new, expanded, internally consistent dataset. Greenstone metamorphism cannot have involved much crustal over-thickening, because very shallow levels of greenstone belts are preserved. Such orogeny can be accounted for if compressive deformation of the crust is accompanied by thinning of the mantle lithosphere. In this case, the observed metamorphism, which was contemporaneous with deformation, is of the low-P high-T type. For this type of metamorphism, the metamorphic peak should have occurred earlier at deeper levels in the crust; i.e. the piezothermal array should be of the ‘deeper-earlier’type. However, at shallow crustal levels, the piezothermal array is likely to have been of ‘deeper-later’type, as a consequence of erosion. Thus, while the lower crust reached maximum temperatures, and partially melted to produce the observed granites, mid-crustal levels were releasing fluids prograde into shallow crustal levels that were already retrograde. We propose that these fluids are responsible for the gold mineralization. Thus, the contemporaneity of igneous activity and gold mineralization is a natural consequence of the thermal evolution, and does not mean that the mineralization has to be a consequence of igneous processes. Upward migration of metamorphic fluid, via appropriate structurally controlled pathways, will bring the fluid into contact with mineral assemblages that have equilibrated with a fluid with significantly lower XCO2. These assemblages are therefore grossly out of equilibrium with the fluid. In the case of infiltrated metabasic rocks, intense carbonation and sulphidation is predicted. If, as seems reasonable, gold is mobilized by the fluid generated by devolatilization, then the combination of processes proposed, most of which are an inevitable consequence of the metamorphism, leads to the formation of greenstone gold deposits predominantly from metamorphic fluids.  相似文献   
3.
We present a detailed, new time scale for an orogenic cycle (oceanic accretion–subduction–collision) that provides significant insights into Paleozoic continental growth processes in the southeastern segment of the long-lived Central Asian Orogenic Belt (CAOB). The most prominent tectonic feature in Inner Mongolia is the association of paired orogens. A southern orogen forms a typical arc-trench complex, in which a supra-subduction zone ophiolite records successive phases during its life cycle: birth (ca. 497–477 Ma), when the ocean floor of the ophiolite was formed; (2) youth (ca. 473–470 Ma), characterized by mantle wedge magmatism; (3) shortly after maturity (ca. 461–450 Ma), high-Mg adakite and adakite were produced by slab melting and subsequent interaction of the melt with the mantle wedge; (4) death, caused by subduction of a ridge crest (ca. 451–434 Ma) and by ridge collision with the ophiolite (ca. 428–423 Ma). The evolution of the magmatic arc exhibits three major coherent phases: arc volcanism (ca. 488–444 Ma); adakite plutonism (ca. 448–438 Ma) and collision (ca. 419–415 Ma) of the arc with a passive continental margin. The northern orogen, a product of ridge-trench interaction, evolved progressively from coeval generation of near-trench plutons (ca. 498–461 Ma) and juvenile arc crust (ca. 484–469 Ma), to ridge subduction (ca. 440–434 Ma), microcontinent accretion (ca. 430–420 Ma), and finally to forearc formation. The paired orogens followed a consistent progression from ocean floor subduction/arc formation (ca. 500–438 Ma), ridge subduction (ca. 451–434 Ma) to microcontinent accretion/collision (ca. 430–415 Ma); ridge subduction records the turning point that transformed oceanic lithosphere into continental crust. The recognition of this orogenic cycle followed by Permian–early Triassic terminal collision of the CAOB provides compelling evidence for episodic continental growth.  相似文献   
4.
鸡西盆地被平麻断裂分割成南、北两个条带,多数研究者将南带1煤之下的海相层叠伏于北带海相层或底砾岩之下,称为“城子河组下段”或“石河北组”。利用事件地层学的原理,分析盆地内城子河组早期盆地裂陷、海侵、火山喷发、聚煤等重大事件在地层精细对比方面的意义,甄别出了盆地中重大事件的地层记录.以等时层为基础建立对比框架。通过大量钻井资料追溯对比,认为盆地中坳陷部位的渴湖海湾沉积是南北两带的沉积过渡类型,根据微体古生物研究,南北两带海相层中的沟鞭藻类化石面貌基本一致,南北带的海相层应是同一层位,初步实现了盆地内南、北两个条带城子河组的精细对比,为恢复盆地古地理环境奠定了可靠的基础。  相似文献   
5.
During the Late Carboniferous to Early Permian, a rift was formed by post-collisional extension after ocean closure or an island arc-related basin formed by Paleo-Asian Ocean (PAO) subduction in the Xi Ujimqin area. Nevertheless, the closure time of the PAO is still under debate. Thus, to identify the origin of the PAO, the geochemistry and U-Pb age of zircons were analyzed for the extra-large deep marine, polymict clastic boulders and sandstones in the Shoushangou Formation within the basin. The analyses revealed magmatic activity and tectonic evolution. The conglomerates include megaclasts of granite (298.8 ± 9.1?Ma) and granodiorite porphyry (297.1 ± 3.1?Ma), which were deposited by muddy debris flow. Results of this study demonstrated that the boulders of granitoids have the geochemistry of typical I-type granite, characterized by low Zr + Nb + Ce + Y and low Ga/Al values. The granitoid boulders were formed in island arc setting, indicating the presence of arc magmatism in the area that is composed of the Late Carboniferous to Early Permian subduction-related granitoid in southern Xi Ujimqin. Multiple diagrams for determining sedimentary provenance using major and trace elements indicate that Shoushangou sediments originated from continental island arc-related felsic rocks. Detrital zircon U-Pb age cluster of 330–280?Ma was obtained, indicating input from granite, ophiolite, Xilin Gol complex, and Carboniferous sources to the south. The basin was geographically developed behind the arc during the Early Permian period because the outcropped intrusive rocks in the Late Carboniferous to Early Permian form a volcanic arc. The comprehensive analyses of source areas suggest that Shoushangou sediments developed in a backarc basin in response to the northward subduction of the PAO. The backarc basin and intrusive rocks, in addition to previously published Late Carboniferous to Early Permian magmatic rocks of arc unit in Xilin Gol, confirm the presence of an Early Permian trench-arc-basin system in the region, represented by the Baolidao arc and Xi Ujimqin backarc basin. This study highlights the importance and potential of combined geochemical and geochronological studies of conglomerates and sandstone for reconstructing the geodynamic setting of a basin.  相似文献   
6.
为研究地铁建设对济南白泉泉群的影响,在综合分析白泉泉域地质、水文地质条件的基础上,假定研究区岩溶强径流带位置及水力性质,利用FEFLOW软件建立地下水流数值模型。以规划地铁M1号线为研究对象,分析了济南东站、梁王站、梁王东站分别施工及3个站同时施工4种情景下,采用施工降水或施工降水+人工回灌两种施工方式对白泉泉群流量的影响。结果表明:单独采用施工降水的施工方式使得白泉泉群流量衰减,其中3个站同时施工对泉流量的影响最大,泉流量最大衰减达5.48%;各站分别施工时,济南东站对泉流量影响最大,泉流量较未施工时减少了0.043×104 m3/d。采用施工降水+人工回灌的施工方式,能够有效缓解泉流量的衰减,各车站施工时的泉流量衰减由仅施工降水时的2.26%~5.48%降低至0.08%~1.21%。岩溶强径流带有利于地下水形成优势径流,促进白泉泉群补给,一定程度上缓解因地铁施工引起的泉流量衰减。  相似文献   
7.
地学“开合律”及其在造山带研究中的意义   总被引:14,自引:2,他引:12  
“开合律”是地学辩证法基本规律之一。本文概述了它的内容与特点,阐明它在造山带研究中的意义及运用它指导造山带研究的步骤,并根据目前已总结的5种“开”、“合”类型相应地提出了5种造山带类型。  相似文献   
8.
Preservation/exhumation of ultrahigh-pressure subduction complexes   总被引:14,自引:0,他引:14  
W.G. Ernst   《Lithos》2006,92(3-4):321-335
Ultrahigh-pressure (UHP) metamorphic terranes reflect subduction of continental crust to depths of 90–140 km in Phanerozoic contractional orogens. Rocks are intensely overprinted by lower pressure mineral assemblages; traces of relict UHP phases are preserved only under kinetically inhibiting circumstances. Most UHP complexes present in the upper crust are thin, imbricate sheets consisting chiefly of felsic units ± serpentinites; dense mafic and peridotitic rocks make up less than  10% of each exhumed subduction complex. Roundtrip prograde–retrograde PT paths are completed in 10–20 Myr, and rates of ascent to mid-crustal levels approximate descent velocities. Late-stage domical uplifts typify many UHP complexes.

Sialic crust may be deeply subducted, reflecting profound underflow of an oceanic plate prior to collisional suturing. Exhumation involves decompression through the PT stability fields of lower pressure metamorphic facies. Scattered UHP relics are retained in strong, refractory, watertight host minerals (e.g., zircon, pyroxene, garnet) typified by low rates of intracrystalline diffusion. Isolation of such inclusions from the recrystallizing rock matrix impedes back reaction. Thin-aspect ratio, ductile-deformed nappes are formed in the subduction zone; heat is conducted away from UHP complexes as they rise along the subduction channel. The low aggregate density of continental crust is much less than that of the mantle it displaces during underflow; its rapid ascent to mid-crustal levels is driven by buoyancy. Return to shallow levels does not require removal of the overlying mantle wedge. Late-stage underplating, structural contraction, tectonic aneurysms and/or plate shallowing convey mid-crustal UHP décollements surfaceward in domical uplifts where they are exposed by erosion. Unless these situations are mutually satisfied, UHP complexes are completely transformed to low-pressure assemblages, obliterating all evidence of profound subduction.  相似文献   

9.
Two types of structurally controlled hydrothermal mineralization have occurred during folding of fissile schist in southern New Zealand: fold-related mineralization and normal fault-related mineralization. Both types have the same mineralogy and textures, and are dominated by quartz–ankerite veins and silicified breccias with ankeritic alteration. Most mineralized zones are thin (centimetre scale), although host schist is commonly impregnated with ankerite up to 20 m away. Thick (up to 5 m wide) mineralized zones are generally gold-bearing and contain pyrite and arsenopyrite with stibnite pods locally. Some of these auriferous zones have been extensively mined historically despite rugged topography and difficult access. Mineralization occurred during regional tectonic compression in the initial stages of development of the Southern Alps mountain belt at the Pacific–Australian plate boundary in the Miocene. Most of the gold-bearing deposits occur in east to south-east, striking normal faults that cut across mesoscopic folds in a belt that coincides with the southern termination of a regional-scale north trending antiform. Mineralized zones have similar structural control and relative timing to a nearby swarm of Miocene lamprophyre dykes and carbonatites. Limited stable isotopic data (C and O) and trace element geochemistry suggest that there was probably no genetic link between the igneous activity and gold mineralization. However, these two types of fluid flow have been controlled by the same tectonically created crustal plumbing system. This Miocene hydrothermal activity and gold deposition demonstrates that orogenic (mesothermal) mineralization can occur during the inception of an orogenic belt, not just in the latter stages as is commonly believed. These Miocene structures have been preserved in the orogen because the locus of uplift has moved northwards, so the early-formed gold deposits have not yet been structurally overprinted or eroded.  相似文献   
10.
Two apparently distinct, sub-parallel, paleo-subduction zonescan be recognized along the northern margin of the Tibetan Plateau:the North Qilian Suture Zone (oceanic-type) with ophioliticmélanges and high-pressure eclogites and blueschistsin the north, and the North Qaidam Belt (continental-type) inthe south, an ultrahigh-pressure (UHP) metamorphic terrane comprisingpelitic and granitic gneisses, eclogites and garnet peridotites.Eclogites from both belts have protoliths broadly similar tomid-ocean ridge basalts (MORB) or oceanic island basalts (OIB)in composition with overlapping metamorphic ages (480–440Ma, with weighted mean ages of 464 ± 6 Ma for North Qilianand 457 ± 7 Ma for North Qaidam), determined by zirconU–Pb sensitive high-resolution ion microprobe dating.Coesite-bearing zircon grains in pelitic gneisses from the NorthQaidam UHP Belt yield a peak metamorphic age of 423 ±6 Ma, 40 Myr younger than the age of eclogite formation, anda retrograde age of 403 ± 9 Ma. These data, combinedwith regional relationships, allow us to infer that these twoparallel belts may represent an evolutionary sequence from oceanicsubduction to continental collision, and continental underthrusting,to final exhumation. The Qilian–Qaidam Craton was probablya fragment of the Rodinia supercontinent with a passive marginand extended oceanic lithosphere in the north, which was subductedbeneath the North China Craton to depths >100 km at c. 423Ma and exhumed at c. 403 Ma (zircon rim ages in pelitic gneiss). KEY WORDS: HP and UHP rocks; subduction belts; zircon SHRIMP ages; Northern Tibetan Plateau  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号