首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
地球物理   2篇
地质学   7篇
  2019年   1篇
  2015年   1篇
  2012年   1篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2007年   1篇
排序方式: 共有9条查询结果,搜索用时 46 毫秒
1
1.
Being a potential preferential way for water to flow, interfaces between host rock and engineered barriers are critical in the design of deep radioactive waste repositories. In case of cementitious materials, presence of water may lead to long term degradation by leaching. Such a phenomenon could impede the integrity of the confinement by its effect on the hydro-mechanical properties of the interface. Recent experimental results from Buzzi et al. [8] have evidenced some effects of leaching on the hydro-mechanical behavior of rock–concrete interfaces for one leaching time. This paper intends to investigate the influence of leaching on the mechanical behavior of rock–mortar interfaces by means of numerical simulations. These latter will be run for several leaching times to produce a better understanding of the phenomenon. For this purpose, a DEM approach has been developed to simulate the increase of the macro-porosity resulting from the leaching process. The implementation of the approach is first discussed. Then direct shear tests under constant normal stress are performed on a simple interface geometry and on a natural interface geometry. The results after Buzzi et al. [8] are corroborated by this research.  相似文献   
2.
近年来,玻璃钢夹砂管在(管工程中的到越来越广泛的应用,以广州市某污水工程顶管施工为例,介绍了玻璃钢夹砂管在流砂地层的应用,以及在顶管施工中所要注意的事项和应对措施,以供工程技术人员和同类工程参考。  相似文献   
3.
4.
玻璃钢夹砂管在土木水利工程领域得到了愈来愈广泛的应用,但现有的埋地管道地震响应分析模型大多不考虑管-土动力相互作用,且多针对均质材料管道,无法应用于具有明显层状复合材料结构特征的玻璃钢夹砂管。基于玻璃钢夹砂管的层状复合材料结构特征,建立了完整的埋地玻璃钢夹砂管地震响应分析模型,在数值分析模型中,考虑了管-土间复杂的动力相互作用,以及地震散射波从有限域向无限域的传播。算例分析表明,所建立的埋地玻璃钢夹砂管地震响应分析模型可合理地分析埋地玻璃钢夹砂管在地震荷载作用下的动力响应。  相似文献   
5.
In geotechnical engineering, numerical analysis of pile capacity is often performed in such a way that piles are modeled using only the geometry of their final position in the ground and simply loaded to failure. In these analyses, the stress changes caused by the pile installation are neglected, irrespective of the installation method. For displacement piles, which are either pushed or hammered into the ground, such an approach is a very crude simplification. To model the entire installation process of displacement piles a number of additional nonlinear effects need to be considered. As the soil adjacent to the pile is displaced significantly, small deformation theory is no longer applicable and a large deformation finite element formulation is required. In addition, the continuously changing interface between the pile and the soil has to be considered. Recently, large deformation frictional contact has been used to model the pile installation and cone penetration processes. However, one significant limitation of the analysis was the use of linear elements, which have proven to be less accurate than higher order elements for nonlinear materials such as soils.

This paper presents a large deformation frictional contact formulation which can be coupled consistently with quadratic solid elements. The formulation uses the so-called mortar-type discretisation of the contact surfaces. The performance of this contact discretisation technique is demonstrated by accurately predicting the stress transfer between the pile and the soil surfaces.  相似文献   

6.
One of the driving forces in porous media flow is the capillary pressure. In standard models, it is given depending on the saturation. However, recent experiments have shown disagreement between measurements and numerical solutions using such simple models. Hence, we consider in this paper two extensions to standard capillary pressure relationships. Firstly, to correct the nonphysical behavior, we use a recently established saturation-dependent retardation term. Secondly, in the case of heterogeneous porous media, we apply a model with a capillary threshold pressure that controls the penetration process. Mathematically, we rewrite this model as inequality constraint at the interfaces, which allows discontinuities in the saturation and pressure. For the standard model, often finite-volume schemes resulting in a nonlinear system for the saturation are applied. To handle the enhanced model at the interfaces correctly, we apply a mortar discretization method on nonmatching meshes. Introducing the flux as a new variable allows us to solve the inequality constraint efficiently. This method can be applied to both the standard and the enhanced capillary model. As nonlinear solver, we use an active set strategy combined with a Newton method. Several numerical examples demonstrate the efficiency and flexibility of the new algorithm in 2D and 3D and show the influence of the retardation term. This work was supported in part by IRTG NUPUS.  相似文献   
7.
Like the majority of the Mediterranean monuments, the monumental Bab Agnaou gate is covered by a patina having an ochre brown hue. The petrological and mineralogical studies of this patina using optical microscopy, X-ray diffraction analysis, grazing incidence X-ray diffraction and electronic scan microscopy made it possible to determine its nature. It is about an artificial patina containing lime and clays, its colour is attributed to earth pigment. The experimental result and some rare historical documents made it possible to specify that the application of this patina goes back to the 1930s during the restoration work carried out at this time.  相似文献   
8.
以汶川地震宏观震中映秀镇(实际烈度Ⅺ度)中裂而未倒且保存较完好的漩口中学南西栋教师宿舍楼为原型,采用有限元软件ABAQUS进行建模分析,研究构造柱布置数量、砂浆强度对砌体结构抗震能力的影响。分别通过改变构造柱布置数量和砂浆强度等级,建立3个模型进行对比分析,选取底层间位移角最大值作为衡量标准。研究结果表明:在遭遇烈度不高于Ⅷ度的地震时,构造柱的作用微乎其微,其布置数量的多少对砌体结构抗震能力的增加效果不明显;在遭遇烈度高于Ⅷ度的地震时,构造柱作用能够显现出来,其布置数量的增加能够有效增加砌体结构的抗震能力;砌体结构的抗震性能随砂浆强度等级的增加而提高。  相似文献   
9.
Pore-scale models are becoming increasingly useful as predictive tools for modeling flow and transport in porous media. These models can accurately represent the 3D pore-structure of real media. Currently first-principles modeling methods are being employed for obtaining qualitative and quantitative behavior. Generally, artificial, simple boundary conditions are imposed on a model that is used as a stand-alone tool for extracting macroscopic parameters. However, realistic boundary conditions, reflecting flow and transport in surrounding media, may be necessary for behavior that occurs over larger length scales or including pore-scale models in a multiscale setting. Here, pore-scale network models are coupled to adjacent media (additional pore-scale or continuum-scale models) using mortars. Mortars are 2D finite-element spaces employed to couple independent subdomains by enforcing continuity of pressure and flux at shared boundary interfaces. While mortars have been used in the past to couple subdomains of different models, physics, and meshes, they are extended here for the first time to pore-scale models. The approach is demonstrated by modeling single-phase flow in coupled pore-scale models, but the methodology can be utilized to model dynamic processes and perform multiscale modeling in 3D continuum simulators for flow and transport.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号