首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   6篇
  国内免费   16篇
地球物理   2篇
地质学   44篇
海洋学   5篇
综合类   9篇
自然地理   2篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2016年   5篇
  2015年   7篇
  2014年   5篇
  2013年   4篇
  2012年   4篇
  2011年   3篇
  2010年   2篇
  2009年   10篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2004年   3篇
  2003年   3篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1992年   1篇
  1989年   1篇
排序方式: 共有62条查询结果,搜索用时 15 毫秒
1.
Although many bioessential metals are scarce in natural water and rock systems, microbial secretion of high-affinity ligands for metal extraction from solid phases has only been documented for Fe. However, we have discovered that Mo is extracted from a silicate by a high-affinity ligand (a possible “molybdophore”) secreted by an N2-fixing soil bacterium. The putative molybdophore, aminochelin, is secreted as a siderophore under Fe-depleted conditions, but is also secreted under Fe-sufficient, Mo-depleted conditions. Presumably, molybdophore production facilitates uptake of Mo for use in Mo enzymes. In contrast, an Fe-requiring soil bacterium without a special Mo requirement only enhances the release of Fe from the silicate. Fractionation of Mo stable isotopes during uptake to cells may provide a “fingerprint” for the importance of chelating ligands in such systems. Many such metal-specific ligands secreted by prokaryotes for extraction of bioessential metals, their effects on Earth materials, and their possible utility in the recovery of economic metals remain to be discovered.  相似文献   
2.
Hematite is a thermodynamically stable iron oxide under the aerobic conditions present in most natural surface soils and sediments. Most studies to date have focused on the capacity of hematite to adsorb trace metals and metalloids, but structural incorporation of trace metals within hematite is less recognized. This study assessed the incorporation of molybdenum within the structure of hematite during the phase transformation of 2-line ferrihydrite under alkaline conditions (pH ∼10). Extended X-ray absorption fine structure analyses show molybdenum incorporated into hematite, with two Mo-O shells having a coordination number (CN) of 3 and average bond distances of 1.78 ± 0.01 and 2.08 ± 0.02 Å, respectively, as well as two Mo-Fe shells with a CN of 3 and average bond distances of 3.10 ± 0.02 Å and 3.44 ± 0.02 Å, respectively. This observation suggests the tetrahedrally-coordinated Mo in the molybdate that adsorbs onto the 2-line ferrihydrite changes to an octahedrally-coordinated Mo within the hematite with Mo possibly substituting for Fe in the hematite structure. Our findings suggest that molybdenum partitioning (low concentrations) to iron oxides in the environment can occur due to structural incorporation as well as adsorption.  相似文献   
3.
A new method for the direct determination of reduced and oxidized Mo species (Mo (V) and Mo (VI)) in seawater was developed and used for the first time. The method includes the complexation of Mo (V) with tartrate, solid phase extraction of the Mo (V)–tartrate complex by a XAD 7HP resin, followed by elution with acidic acetone. In this study, the eluted Mo (V) was quantified by graphite furnace atomic absorption spectrometry. The detection limit of this protocol was on the order of 0.2 nM. The analytical precision was 10% of ~ 10 nM. This method was successfully applied to the determination of Mo (V) and Mo (VI) in surface and bottom waters at the head of Peconic River Estuary. Total Mo (Mo (V) + Mo (VI)) ranged from 100–120 nM in most bottom saline waters, and 2.5–15 nM for surface fresher waters. Concentrations of Mo (V) in these environments ranged from 0 nM to ~ 15 nM, accounting for 0%–15% of the total dissolved Mo pool. The time series experiments showed that the Mo speciation changed within 1 h after the water collection, and therefore it is strongly suggested that speciation analysis be carried out within the first 15 min. However, since these are the first Mo speciation data in concentration ranges typical of normal marine and coastal waters, additional research may be required to optimize the methodology and further explore Mo cycling mechanisms.  相似文献   
4.
冀西安妥岭斑岩型钼矿成矿地质条件浅析   总被引:1,自引:0,他引:1  
安妥岭钼矿位于燕辽钼(铜)成矿带南端,与附近的野弧斑岩型钼矿等具有相同的地质背景和成矿条件。文章阐述了古结晶基底、中生代岩体以及NNE、NW和近EW向构造与成矿的关系,提出安妥岭钼矿是在斑岩型矿床基础上,叠加了主要沿NW向构造发育的岩浆热液成矿作用所形成的具有复杂成矿系列的非典型斑岩钼矿床。  相似文献   
5.
Six peat samples obtained from the Holocene and the Weichselian of the Philippi peat deposit, eastern Macedonia, Greece, were analyzed for 48 trace elements by Inductively Coupled Plasma–Mass Spectrometry (ICP–MS). The ash contents of these samples were also determined. Most of the trace elements are associated with the minerals in the peat, while Ge, Mo, Pb, Se, Ta, Tl, U, and W display a greater affinity with the organic matter. Compared with crustal averages (Clarke concentrations), the Philippi peat is enriched in some elements (Ag, As, Au, Cd, Mo, Se, Te, U, and W) because of the respective mineralizations in the area. The Philippi peat is also enriched in Cr, Cu, Mo, Pb, Sc, Sn, T, V, Y, and Zn in comparison with typical fen peats, as well as in As, Cr, Mo, Se, and U in comparison with typical coals. Climatic and hydrogeological conditions strongly influenced the peat-forming environment resulting in a differentiation between Holocene and Weichselian peat. Generally, the Holocene peat contains lower concentrations of trace elements in the northern and southern part of the fen, than the Weichselian one. The opposite trend is observed in the fen area close to the western basin margins.  相似文献   
6.
钼是重要的战略性矿产资源。我国的钼矿床类型多样,主要分为内生和外生等5种类型,其中斑岩型矿床是最重要的矿床类型。钼矿床分布具有区域分带的特点,这种特点与其成矿动力学背景密切相关。在今后钼矿床的勘查找矿工作中,把加强已有矿山的深部和外围找矿与开展非传统地区的勘查找矿相结合,重视内生矿床尤其是斑岩型矿床的成矿潜力,以实现钼矿床的找矿新突破。  相似文献   
7.
邢家山大型钼钨矿床位于胶东栖霞-蓬莱-福山金及多金属成矿区东部,矿床主要赋存于晚侏罗世二长花岗岩外接触带的变质地层中,倒转向斜分布区是钼钨成矿有利部位。幸福山岩体为成矿母岩,粉子山群的碳酸盐岩既易交代成矿亦形成了屏蔽层,NW向张扭性断裂导矿,层间裂隙、节理和矿物间隙沉淀成矿。钼钨矿化作用与矽卡岩化、钾化、硅化密切相关,矿床工业类型属矽卡岩型-斑岩型,成因类型属于岩浆期后热液矿床,矿石建造属钨钼建造,该成果对在胶东地区寻找同类型钼矿床具有重要意义。  相似文献   
8.
豫西洛宁沙坡岭钼矿床位于华北克拉通南缘东秦岭钼矿带东段,是新近发现的赋存于太古宙太华群变质岩中的细脉浸染型钼矿床。本文对其地质特征进行了研究,并初步测定了1个辉钼矿样品的Re-Os同位素年龄,获得模式年龄为126.8±1.7Ma,表明沙坡岭钼矿形成于燕山期,接近金堆城、雷门沟钼矿的形成时代,Re同位素含量显示其地幔来源的特征。沙坡岭钼矿形成机制错综复杂,有待进一步研究,特别是深部钻孔工程验证工作,对于验证深部是否隐伏着与成矿相关的斑岩体、储量更大的斑岩型钼矿有着重要作用,找矿潜力巨大。  相似文献   
9.
新疆东戈壁钼矿位于北觉罗塔格晚古生代岛弧增生带内,是新疆探明的第一个特大斑岩型钼矿床.东戈壁斑岩型钼矿床斑岩体为隐伏斑状花岗岩体,属S型花岗岩,在斑状花岗岩体中可见辉钼矿化、黄铁矿化、黄铜矿化等金属矿物矿化,岩体侵位深度相对较深.觉罗塔格晚古生代岛弧增生带具良好成矿条件,区域上找矿潜力巨大.因此,研究东戈壁钼矿床斑岩体特征和成因,对该成矿带内寻找同类型钼矿床具一定指导意义  相似文献   
10.
The physico-chemical properties of water samples from the two athalassic endorheic lakes Bogoria and Nakuru in Kenya were analysed. Surface water samples were taken between July 2008 and October 2009 in weekly intervals from each lake. The following parameters were determined: pH, salinity, electric conductivity, dissolved organic carbon (DOC), the major cations (FAAS and ICP-OES) and the major anions (IC), as well as certain trace elements (ICP-OES). Samples of superficial sediments were taken in October 2009 and examined using Instrumental Neutron Activation Analysis (INAA) for their major and trace element content including rare earth elements (REE). Both lakes are highly alkaline with a dominance of Na > K > Si > Ca in cations and HCO3 > CO3 > Cl > F > SO4 in anions. Both lakes also exhibited high concentrations of Mo, As and fluoride. Due to an extreme draught from March to October 2009, the water level of Lake Nakuru dropped significantly. This created drastic evapoconcentration, with the total salinity rising from about 20‰ up to 63‰. Most parameters (DOC, Na, K, Ca, F, Mo and As) increased with falling water levels. A clear change in the quality of DOC was observed, followed by an almost complete depletion of dissolved Fe from the water phase. In Lake Bogoria the evapoconcentration effects were less pronounced (total salinity changed from about 40‰ to 48‰). The distributions of REE in the superficial sediments of Lake Nakuru and Lake Bogoria are presented here for the first time. The results show a high abundance of the REE and a very distinct Eu depletion of Eu/Eu* = 0.33–0.45.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号