首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
地质学   7篇
  2016年   1篇
  2011年   1篇
  2008年   1篇
  2005年   1篇
  2002年   1篇
  2000年   1篇
  1998年   1篇
排序方式: 共有7条查询结果,搜索用时 31 毫秒
1
1.
In this contribution we report a study of poorly exposed, rhyodacitic welded-ignimbrite deposit from Minas Gerais. A petrographic study of textures indicate high temperature of emplacement. Key features include eutaxitic texture, flattened and agglutinated lapilli and glass menisci. Most of the feldspar minerals and glass are extensively altered to clay minerals, which pseudomorph the original volcanic textures. Glass menisci and spherules suggest a possible process of liquid immiscibility. Immobile trace element distribution indicates a possible link with other post-Palaeozoic felsic volcanic rocks in Brazil, a magmatism interpreted as due to basaltic underplating and partial melting of a hydrous continental crust. A peculiar feature is a high Light REE/Heavy REE ratio. Depletion in heavy rare earth elements is possibly due to a residual HREE-bearing phase in the source. The geologic context of these rocks suggests a Lower Cretaceous age and a tectonic relationship with a continental rifting event.  相似文献   
2.
The chemical composition and Rb–Sr ages of mica, feldspar, and whole rock samples from the emerald mineralisation of Capoeirana and Belmont, from emerald-barren pegmatites and of the Borrachudos granitic gneiss, Monlevade banded and granitic gneisses from the area of Nova Era–Itabira–Ferros (Minas Gerais, Brazil) as well as from the Guanhães gneiss (Minas Gerais, Brazil) have been determined. The Borrachudos granitic and Monlevade banded gneiss with connected pegmatitic schlieren and pegmatite veins, as well as the Guanhães gneiss, got their actual textures and mineralogical composition at about 1.9 Ga in the context of the Transamazonic tectonothermal event.The Monlevade banded gneiss belongs to a volcano-metasedimentary greenstone belt sequence, which is the typical country rock of the emerald occurrences. The main emerald-forming event at Belmont and Capoeirana was a metasomatic reaction of Be-rich anatectic pegmatites with Cr-rich ultrabasic rocks during the Transamazonic event. At Capoeirana, K–feldspar-bearing Be-rich pegmatites were transformed during the emerald-forming process into plagioclase–quartz rocks. Rb–Sr ages on biotite of about 480 Ma from the emerald mineralisation result from the rejuvenation of Transamazonic biotite by the Brasiliano event.The widespread macroscopically unmetamorphosed pegmatites of the study area formed in the Brasiliano event at 477±14 Ma. These pegmatites resulted to be emerald-barren although the differentiation degree, as given by diagrams such as Cs vs. K/Rb for muscovite and K–feldspar, starts from ceramic and ends with Be pegmatites. Some pegmatites display a marked internal differentiation.

Abstract

Foram determinadas as composições químicas e as idades Rb–Sr de mica branca, feldspato potássico e de rochas totais das mineralizações de esmeraldas de Capoeirana e Belmont, de pegmatitos sem esmeraldas e dos gnaisses Borrachudos, Monlevade e Guanhães da região de Nova Era–Itabira–Ferros (Minas Gerais, Brazil). Os gnaisses graníticos Borrachudos, os gnaisses bandados Monlevade, seus respectivos pegmatitos e veios/schlieren pegmatóides, e os gnaisses Guanhães, adquiriram suas texturas e composições mineralógicas atuais há cerca de 1.9 Ga no contexto do evento Transamazônico.As rochas regionais encaixantes típicas das ocorrências de esmeraldas são os gnaisses Monlevade que pertencem a uma sequência metavulcano-sedimentar de tipo greenstone belt. O evento principal de formação de esmeraldas em Belmont e Capoeirana foi uma reação metassomática dos pegmatitos anatéticos ricos em Be com rochas ultrabásicas ricas em Cr durante o evento Transamazônico em torno de 1.9 Ga. Em Capoeirana nesse contexto os pegmatitos com feldspato potássico ricos em Be foram transformados em rochas de plagioclasio–quartzo. As idades Rb–Sr de cerca de 480 Ma de minerais das mineralizações de esmeralda resultaram da reequilibração de biotitas e feldspatos Transamazônicos durante o evento Brasiliano.Os pegmatitos não-metamórficos e sem esmeralda da região estudada foram formados no evento Brasiliano há 477±14 Ma. O grau de diferenciação dos pegmatitos, estudado em diagramas indicadores específicos como por exemplo Cs vs. K/Rb de micas brancas e feldspatos potássicos, varia desde pegmatitos cerámicos até muscovita-pegmatitos, à pegmatitos de metais raros e até berilíferos. Alguns dos pegmatitos apresentam marcante diferenciação interna.  相似文献   
3.
The Palaeo-Mesoproterozoic metasiliciclastic rocks of the southern Serra do Espinhaço, Minas Gerais, Brazil, are host to historically important alluvial deposits of diamonds and gold. Detrital gold grains often comprise Au–Pd–Pt intermetallic compounds, with low Ag contents, which contain inclusions of tourmaline and titaniferous hematite (up to ~ 6 wt.% TiO2). The latter minerals connect the alluvial mineralisation to the rutile–hematite–quartz veins and tourmalinisation observed in the quartzitic country rocks of the alluvial gravel. The quartzite (Sopa-Brumadinho Formation of lacustrine to fan-deltaic origin) is affected by pervasive B metasomatism with F-bearing tourmaline replacing the recrystallised quartz fabric. The tourmaline belongs to the alkali group, with Mg/(Mg + Fe) and X/(X + Na) ratios in the ranges from 0.5 to 0.7 and 0.18 to 0.29, respectively, where X represents vacancies in the X site. Boron-isotopic values of tourmaline vary from ~ 1 to − 10.4‰ δ11B. The B-isotope range, in conjunction with the Na–Mg-rich tourmaline composition, and the widespread occurrence of tourmalinite in the Sopa-Brumadinho Formation suggest a derivation from non-marine evaporitic brines. Brines are capable of transporting otherwise immobile Ti and explain, under oxidising conditions, the fractionation of Ag from Pd to precipitate palladiferous gold with extremely high Pd/Ag ratios. Zirconium-in-rutile and Ti-in-quartz temperatures for a variety of hematite-rich veins suggest episodic vein emplacement over a temperature range from around 500 °C to ~ 350 °C. Cross-cutting relationships and episodic vein emplacement indicate a late-Brasiliano age.  相似文献   
4.
In mafic granulites, garnet can form by reactions such as Opx + Pl = Cpx + Grt + Qtz; Opx + Pl = Grt + Qtz. As a result of isothermal decompression (ITD), garnet can then break down to a characteristic orthopyroxene-plagioclase symplectite. Mafic, iron-rich garnet-pyroxene granulite from the Guaxupé Massif has symplectite that formed by near-isothermal decompression, as a consequence of uplift of the granulite facies terrane. This symplectite was found to consist of vermicular clinopyroxene-orthopyroxene-plagioclase, with clinopyroxene clearly growing from the garnet that is breaking down, modal amounts of clinopyroxene being less than orthopyroxene. Electron probe analyses show clear differences between core (Cpx1), rim, and symplectite clinopyroxene (Cpx2). Considering also the presence of magnetite in the symplectite texture, garnet breakdown is thought to be better represented by a reaction such as Cpx1 + Grt + O2 = Cpx2 + Opx + Pl +Mt + Qtz.  相似文献   
5.
Fluid inclusions hosted in quartz and specular hematite from auriferous (jacutinga) and barren veins in the Quadrilátero Ferrífero (QF) have been studied using conventional and near infrared microscopy, respectively. The mineralization consists of veins that cross-cut metamorphosed iron formation (itabirite) of the Paleoproterozoic Itabira Group. The sample suite comprises hematite from veins from the low-strain domain in the W and SW of the study area, as well as hematite samples from the eastern high-strain domain in the central and NE parts of the QF. Halogen ratios of fluid inclusions in quartz and hematite from all studied deposits are consistent with a fluid evolved from dissolving and reprecipitating halite that was subsequently diluted. Fluid inclusions hosted in quartz and hematite are characterized by consistent Na/K ratios and considerable SO4 contents, and suggest similar formation conditions and, perhaps, fluid origin from a common source. Na/K and Na/Li fluid mineral geothermometers indicate water–rock interaction at approximately 340±40°C. Hematites from the high-strain domain contain fluid inclusion assemblages of high-temperature aqueous-carbonic and multiphase high-salinity, high-temperature aqueous inclusions probably due to fluid immiscibility in the system H2O–NaCl–CO2. Fluid inclusions hosted in hematite from barren veins in the low-strain domain, as well as in hematite from jacutinga-type mineralization from the central part of the QF, only host multiphase aqueous fluid inclusions all showing narrow ranges of salinity (7.2–11.7 wt.% NaCl equiv.) and homogenization temperatures (148 to 229°C). Lower homogenization temperatures and the absence of CO2-rich inclusions in specular hematite from these occurrences are attributed to carbonate precipitation and/or CO2 escape due to cooling during fluid migration from the high- to the low-strain domain. Pb–Pb and U–Pb systematics of gold, hematite and hematite-hosted fluid inclusions in combination with geochemical evidence indicate distinct sources for Pd, Au, and Pb. The formation of specular hematite veins may be related to retrograde metamorphic fluids being released during the Brazilian orogenic cycle (600–700 Ma). The Pb isotopic characteristics of all samples are readily reconciled in a simple model that involves two different Paleoproterozoic or Archean source lithologies for lead and reflects contrasting depths of fluid percolation during the Brasiliano orogeny.  相似文献   
6.
Mercury contents in Precambrian banded iron formation-hosted hematite ores are virtually unknown. In an attempt to provide information on the abundance and distribution of Hg in Fe ore, we present analyses for Hg in samples of high-grade soft hematite ore from Gongo Soco, Minas Gerais, Brazil. Bulk samples contain from <  5 to 25  ppb Hg without obvious correlation with major elements. Granulometric fractions of follow-up samples have amounts of Hg from 6 to 48  ppb and display positive linear correlations with total Mn as MnO (r = 0.87), LOI (r = 0.87) and SiO2 (r = 0.76), as well as a negative linear correlation with total Fe as Fe2O3 (r = −  0.87). The correlations suggest that Hg is associated with a hydrated ferruginous groundmass bearing residual Mn, Al and Si, which replaced gangue minerals in itabirite in the process of formation of the Gongo Soco soft hematite ore.  相似文献   
7.
Granulite rocks are exposed in eastern Minas Gerais, Brazil. Its early neoproterozoic evolution is characterised by a history of an active continental margin, including the accretion of suspect terranes. The Manhuaçu Terrane is one of those which is represented by a granitic continental plutonic arc and terrigeneous metasediments reflecting a continental margin. A metasedimentary gneiss belt at this margin with shallow to deep marine clastic lithologies as well as metavolcanic and metaplutonic mafic rocks was interpreted as an extensive tectonic segment with suspect development in a back-arc setting. Fragments of a volcanic arc are identified and interpreted as an evidence for a probable island-arc domain. The granulites occur as massive rocks as well as high-grade gneisses and show lithological, structural and metamorphic attributes consistent with their host belt type. In the western portion granulites derived from sedimentary protoliths, have been deposited, deformed and metamorphosed together with the mafic intrusions and as well as with their crystallization. Regional uplift exposed these rocks probably immediately after the metamorphism. In these belts the metamorphic grade is not uniform, especially where uplifting has exposed oblique cross sections over the granulitic rocks. Geothermobarometric calculations indicate that the granulites has been generated under T conditions between 800 and 990 ± 50 C and from medium (4.8 kb) to relatively high (10.0 kb) pressures.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号