首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   570篇
  免费   91篇
  国内免费   403篇
测绘学   3篇
大气科学   2篇
地球物理   68篇
地质学   918篇
海洋学   11篇
天文学   11篇
综合类   27篇
自然地理   24篇
  2024年   3篇
  2023年   6篇
  2022年   13篇
  2021年   31篇
  2020年   24篇
  2019年   37篇
  2018年   56篇
  2017年   32篇
  2016年   61篇
  2015年   45篇
  2014年   61篇
  2013年   69篇
  2012年   59篇
  2011年   55篇
  2010年   23篇
  2009年   34篇
  2008年   35篇
  2007年   40篇
  2006年   26篇
  2005年   33篇
  2004年   44篇
  2003年   27篇
  2002年   23篇
  2001年   24篇
  2000年   30篇
  1999年   22篇
  1998年   14篇
  1997年   29篇
  1996年   17篇
  1995年   15篇
  1994年   19篇
  1993年   19篇
  1992年   4篇
  1991年   9篇
  1990年   4篇
  1989年   6篇
  1988年   5篇
  1987年   4篇
  1985年   2篇
  1983年   2篇
  1980年   1篇
  1977年   1篇
排序方式: 共有1064条查询结果,搜索用时 78 毫秒
1.
A fluid inclusion study on metamorphic minerals of successive growth stages was performed on highly deformed paragneisses from the Nestos Shear Zone at Xanthi (Central Rhodope), in which microdiamonds provide unequivocal evidence for ultrahigh-pressure (UHP) metamorphism. The correlation of fluid inclusion density isochores and fluid inclusion reequilibration textures with geothermobarometric data and the relative chronology of micro- and macro-scale deformation stages allow a better understanding of both the fluid and metamorphic evolution along the PTd path. Textural evidence for subduction towards the NE is recorded by the orientation of intragranular NE-oriented fluid inclusion planes and the presence of single, annular fluid inclusion decrepitation textures. These textures occur within quartz “foam” structures enclosed in an earlier generation of garnets with prolate geometries and rarely within recrystallized matrix quartz, and reequilibrated both in composition and density during later stages of exhumation. No fluid inclusions pertaining to the postulated ultrahigh-pressure stage for microdiamond-bearing garnet–kyanite–gneisses have yet been found. The prolate shape of garnets developed during the earliest stages of exhumation that is recorded structurally by (L  S) tectonites, which subsequently accommodated progressive ductile SW shearing and folding up to shallow crustal levels. The majority of matrix kyanite and a later generation of garnet were formed during SW-directed shear under plane-strain conditions. Fluid inclusions entrapped in quartz during this stage of deformation underwent density loss and transformed to almost pure CO2 inclusions by preferential loss of H2O. Those inclusions armoured within garnet retained their primary 3-phase H2O–CO2 compositions. Reequilibration of fluid inclusions in quartz aggregates is most likely the result of recrystallization along with stress-induced, preferential H2O leakage along dislocations and planar lattice defects which results in the predominance of CO2 inclusions with supercritical densities. Carbonic fluid inclusions from adjacent kyanite–corundum-bearing pegmatoids and, the presence of shear-plane-parallel fluid inclusion planes within late quartz boudin structures consisting of pure CO2-fluid inclusions with negative crystal shapes, bear witness of the latest stage of deformation by NE-directed extensional shear.This study shows that the textures of early fluid inclusions that formed already during the prograde metamorphic path can be preserved and used to derive information about the kinematics of subduction that is difficult to obtain from other sources. The textures of early inclusions, together with later generations of unaltered primary and secondary inclusions in metamorphic index minerals that can be linked to specific deformation stages and even PT conditions, are a welcome supplement for the reconstruction of a rather detailed PTd path.  相似文献   
2.
The crustal structure of the Dabie orogen was reconstructed by a combined study of U–Pb ages, Hf and O isotope compositions of zircons from granitic gneiss from North Dabie, the largest lithotectonic unit in the orogen. The results were deciphered from metamorphic history to protolith origin with respect to continental subduction and exhumation. Zircon U–Pb dating provides consistent ages of 751 ± 7 Ma for protolith crystallization, and two group ages of 213 ± 4 to 245 ± 17 Ma and 126 ± 4 to 131 ± 36 Ma for regional metamorphism. Majority of zircon Hf isotope analyses displays negative εHf(t) values of − 5.1 to − 2.9 with crust Hf model ages of 1.84 to 1.99 Ga, indicating protolith origin from reworking of middle Paleoproterozoic crust. The remaining analyses exhibit positive εHf(t) values of 5.3 to 14.5 with mantle Hf model ages of 0.74 to 1.11 Ga, suggesting prompt reworking of Late Mesoproterozoic to Early Neoproterozoic juvenile crust. Zircon O isotope analyses yield δ18O values of − 3.26 to 2.79‰, indicating differential involvement of meteoric water in protolith magma by remelting of hydrothermally altered low δ18O rocks. North Dabie shares the same age of Neoproterozoic low δ18O protolith with Central Dabie experiencing the Triassic UHP metamorphism, but it was significantly reworked at Early Cretaceous in association with contemporaneous magma emplacement. The Rodinia breakup at about 750 Ma would lead to not only the reworking of juvenile crust in an active rift zone for bimodal protolith of Central Dabie, but also reworking of ancient crust in an arc-continent collision zone for the North Dabie protolith. The spatial difference in the metamorphic age (Triassic vs. Cretaceous) between the northern and southern parts of North Dabie suggests intra-crustal detachment during the continental subduction. Furthermore, the Dabie orogen would have a three-layer structure prior to the Early Cretaceous magmatism: Central Dabie in the upper, North Dabie in the middle, and the source region of Cretaceous magmas in the lower.  相似文献   
3.
Ilmenite in coronitic gabbros from the Bamble and Kongsberg sectors, southern Norway, is surrounded by zircons ranging in diameters from a fraction of a micrometer to 10 μm across. The zircons are inert during subsequent metamorphism (amphibolite- to pumpellyite–prehnite facies) and metasomatism (scapolitization and albitization) and can be found as trails in silicates (phlogopite, talc, chlorite, amphibole, albite, and tourmaline) in the altered rocks. The trails link up to form polygons outlining the former oxide grain boundary. This 3-dimensional framework of zircons is used to (a) recognize metasomatic origin of rocks, (b) quantify the mobility of elements during mineral replacement, (c) establish the growth direction of reaction fronts and to identify the reaction mechanism as dissolution–reprecipitation. Zircon coronas on Fe–Ti oxides have been described from a number of terrains and appear to be common in mafic rocks (gabbros and granulites) providing a tool for a better understanding of metasomatic and metamorphic reactions.  相似文献   
4.
闫方超  刘庆  马雪盈  何苗 《岩石学报》2021,37(8):2579-2598
P-T-t轨迹作为变质岩的重要研究方法之一,对揭示岩石的构造演化过程具有重要意义。北大别饶拔寨镁铁-超镁铁岩形成的构造环境和就位过程长期以来尚存争议。本文通过岩相学观察、矿物化学研究和温压计计算,揭示出饶拔寨石榴辉石岩经历了四个变质演化阶段:1)超高压变质阶段(M1):主要根据石榴子石中金红石的出溶,单斜辉石中石英的出溶和磷灰石中不透明矿物的出溶,结合前人研究,认为饶拔寨石榴辉石岩经历过超高压变质阶段(≥2.5GPa);2)高压麻粒岩相阶段(M2):矿物组合为石榴子石(变斑晶)和单斜辉石(基质)+斜长石(基质),记录的温压条件为T=648~700℃,P=1.47~1.94GPa;3)中压麻粒岩相阶段(M3):以石榴子石外围发育的主要由斜方辉石+斜长石组成的内圈"白眼圈"为特征,形成的温压条件为T=781~796℃,P=0.92~0.98GPa;4)角闪岩相阶段(M4):以石榴子石变斑晶周围发育的外圈"白眼圈"为特征,其矿物组合为角闪石+斜长石的后成合晶,形成的温压条件为T=663~685℃,P=0.50~0.58GPa。石榴辉石岩的锆石SIMS U-Pb定年得到了3组不同的交点年龄,分别为208.1~202.1Ma、227.6Ma和817.7Ma。根据锆石包裹体中角闪石+斜长石的组合,推断208.1~202.1Ma代表了角闪岩相变质年龄的下限,227.6Ma则是高压麻粒岩相的下限年龄,而新元古代年龄(817.7Ma)与区域上的变质岩原岩年龄一致,可能代表了其原岩年龄。结合前人研究,饶拔寨石榴辉石岩记录了顺时针的P-T-t轨迹,揭示了板片俯冲(超高压变质)-碰撞-折返(降压升温过程,~227Ma)-抬升(降压降温过程,208~202Ma)的完整过程。  相似文献   
5.
The behaviour of quartz during metamorphism is studied based on two case studies from the Barrovian terrains of Sulitjelma in arctic Scandinavia and Loch Tay in the Central Highlands Dalradian of Scotland. Both terrains preserve evidence for metamorphism in pelites involving nucleation and growth of garnet at different times in the deformation history. Data are presented on the size, shape and crystallographic orientation of quartz preserved as inclusions in garnet and as grains in the surrounding matrix. While quartz-grains remain small and dispersed between mica grains, deformation appears to be dominated by grain-boundary sliding accommodated by dissolution–precipitation. At amphibolite facies, textural coarsening occurs by dissolution of small quartz grains and growth of larger quartz grains, coupled with segregation of quartz from mica. As a result, quartz deforms by dislocation creep, developing crystallographic preferred orientations (CPO) consistent with both coaxial and non-coaxial strain. Quartz CPOs with <0001> axes lying parallel to foliation and stretching direction are commonly developed, and best explained by mechanical rotation of inequant (detrital?) quartz grains. There is no evidence for selective entrapment of quartz inclusions in garnet on the basis of quartz crystallographic orientation.  相似文献   
6.
We report here U–Pb electron microprobe ages from zircon and monazite associated with corundum- and sapphirine-bearing granulite facies rocks of Lachmanapatti, Sengal, Sakkarakkottai and Mettanganam in the Palghat–Cauvery shear zone system and Ganguvarpatti in the northern Madurai Block of southern India. Mineral assemblages and petrologic characteristics of granulite facies assemblages in all these localities indicate extreme crustal metamorphism under ultrahigh-temperature (UHT) conditions. Zircon cores from Lachmanapatti range from 3200 to 2300 Ma with a peak at 2420 Ma, while those from Mettanganam show 2300 Ma peak. Younger zircons with peak ages of 2100 and 830 Ma are displayed by the UHT granulites of Sengal and Ganguvarpatti, although detrital grains with 2000 Ma ages are also present. The Late Archaean-aged cores are mantled by variable rims of Palaeo- to Mesoproterozoic ages in most cases. Zircon cores from Ganguvarpatti range from 2279 to 749 Ma and are interpreted to reflect multiple age sources. The oldest cores are surrounded by Palaeoproterozoic and Mesoproterozoic rims, and finally mantled by Neoproterozoic overgrowths. In contrast, monazites from these localities define peak ages of between 550 and 520 Ma, with an exception of a peak at 590 Ma for the Lachmanapatti rocks. The outermost rims of monazite grains show spot ages in the range of 510–450 Ma.While the zircon populations in these rocks suggest multiple sources of Archaean and Palaeoproterozoic age, the monazite data are interpreted to date the timing of ultrahigh-temperature metamorphism in southern India as latest Neoproterozoic to Cambrian in both the Palghat–Cauvery shear zone system and the northern Madurai Block. The data illustrate the extent of Neoproterozoic/Cambrian metamorphism as India joined the Gondwana amalgam at the dawn of the Cambrian.  相似文献   
7.
Two apparently distinct, sub-parallel, paleo-subduction zonescan be recognized along the northern margin of the Tibetan Plateau:the North Qilian Suture Zone (oceanic-type) with ophioliticmélanges and high-pressure eclogites and blueschistsin the north, and the North Qaidam Belt (continental-type) inthe south, an ultrahigh-pressure (UHP) metamorphic terrane comprisingpelitic and granitic gneisses, eclogites and garnet peridotites.Eclogites from both belts have protoliths broadly similar tomid-ocean ridge basalts (MORB) or oceanic island basalts (OIB)in composition with overlapping metamorphic ages (480–440Ma, with weighted mean ages of 464 ± 6 Ma for North Qilianand 457 ± 7 Ma for North Qaidam), determined by zirconU–Pb sensitive high-resolution ion microprobe dating.Coesite-bearing zircon grains in pelitic gneisses from the NorthQaidam UHP Belt yield a peak metamorphic age of 423 ±6 Ma, 40 Myr younger than the age of eclogite formation, anda retrograde age of 403 ± 9 Ma. These data, combinedwith regional relationships, allow us to infer that these twoparallel belts may represent an evolutionary sequence from oceanicsubduction to continental collision, and continental underthrusting,to final exhumation. The Qilian–Qaidam Craton was probablya fragment of the Rodinia supercontinent with a passive marginand extended oceanic lithosphere in the north, which was subductedbeneath the North China Craton to depths >100 km at c. 423Ma and exhumed at c. 403 Ma (zircon rim ages in pelitic gneiss). KEY WORDS: HP and UHP rocks; subduction belts; zircon SHRIMP ages; Northern Tibetan Plateau  相似文献   
8.
内蒙古达茂旗宝音图岩群是在达茂旗、查干呼绍地区 1:5万区调和白云鄂博幅 1:2 5万区调过程中从过去的巴特敖包群和白云鄂博群未分岩组解体出来的中级变质岩系。通过对宝音图岩群中阳起钠长片岩、二云片岩 (原岩均为基性火山岩 )进行单颗粒锆石U -Pb法年龄测定 ,获得了两条不一致线上交点年龄 (2 486± 42 )Ma、(2 496± 2 6 )Ma ,代表了宝音图岩群基性火山岩及宝音图岩群的形成时代 ;在不一致线之外不同成因的锆石的2 0 7Pb/ 2 0 6Pb表面年龄 (2 2 2 7± 15 )Ma ,寓示着 2 2 0 0Ma左右发生了一次区域性变质热事件 ;下交点年龄 (319±486 )Ma和 (40 6± 46 )Ma ,代表了 2 5 0~ 480Ma时期该区大面积岩浆侵位及宝音图岩群后期变形变质改造的时期 ,两个年龄样的获得为研究古元古代古陆的裂解及白云鄂博海槽的形成提供了直接依据。  相似文献   
9.
标定大陆科学钻探孔区地震反射体   总被引:18,自引:7,他引:18       下载免费PDF全文
在中国大陆科学钻探孔区 (江苏省东海县南部 )进行了系统的地球物理调查 ,包括二维地震测网和专门的地震剖面 ,大地电磁法和位场方法等 .地震调查表明 ,在超高压变质岩出露区上地壳充满了反射体 ,包括倾斜反射体与上拱的反射弧 .本文介绍大陆科学钻探先行研究中地震调查的成果 .根据大陆科学钻探预先导孔的岩芯和测井资料、井旁VSP和数值模拟结果证实 ,高波速的榴辉岩体、破碎断裂带和大型韧性剪切带都可引起倾斜的地震反射 ,而上拱的弧形反射体则是由近似直立的榴辉岩体和其中的破碎带的综合反映 .由于地壳深部广泛分布着经受变质的岩石 ,上述研究结果对标定地壳中的反射地震信号具有一定意义  相似文献   
10.
The Bikou volcanic terrane is predominated by subalkaline tholeiitic lavas. Rock samples display lower initial ratios of Sr and Nd, 0.701248-0.704413 and 0.511080-0.512341 respectively. 207Pb and 208Pb are significantly enriched in the lavas. Most samples have positive εNd, which indicates that the magma was derived from EM-type mantle source, while a few samples with negative εNd indicate that there was contamination in the magma evolution. Magma differentiation is demonstrated by variations of LREE and LILE from depletion to enrichment. Additionally, normalized REE patterns and trace elements showed that lavas from the Bikou volcanic terrane have similar characteristics to those of basalts in arc settings caused by subduction and collision. Analyses showed that the Bikou volcanic terrane is a volcanic arc. New evidence proved that the Hengdan Group, north of the Bikou arc, is a turbidite terrane filling a forearc basin. Consequently, the Bikou volcanic terrane and the Hengdan turbidite terrane const  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号