首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
地质学   3篇
  2018年   1篇
  2009年   1篇
  2006年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
The Mount Lyell copper deposits are located in the middle Cambrian Mount Read volcanic belt of western Tasmania and consist of more than 24 separate copper–gold–silver orebodies. The dominant copper mineralisation style is disseminated pyrite–chalcopyrite subvertical pipes with subordinate chalcopyrite–bornite ± other copper phases, massive pyrite and base metal sulfides. A zonation in mineralisation style within the pipes is defined from chalcopyrite–magnetite at depth to chalcopyrite–pyrite at intermediate levels, to chalcopyrite–bornite at the shallowest level. Alteration is developed broadly symmetrically around the ore zones and zoned from quartz–chlorite–phengite ± biotite at depth to quartz–muscovite at intermediate levels, and a quartz–muscovite–pyrophyllite–zunyite assemblage at the shallowest levels. This is interpreted to be a result of a fluid that evolved from hot, reduced and neutral conditions at depth to cool, oxidised and acidic conditions at the shallowest level. The chalcopyrite–bornite deposits occur at the top of the hydrothermal system and are associated with intensely silicified rock and muscovite/pyrophyllite alteration. The close relationship of these deposits with the top of the pipes suggests they are part of a single mineralising event. Where the chalcopyrite–bornite deposits are juxtaposed with the Owen Group, rather than a simple chalcopyrite–bornite mineralogy, there are numerous other copper phases, which represent higher oxidation states and collectively suggest variable and fluctuating fluid conditions during deposition. It is proposed that these deposits are formed by an interaction of the reduced hydrothermal fluid with an oxidised fluid generated at very shallow levels within and during deposition of the Owen Group. Mineralisation within the middle Owen Group sandstones and clasts of altered rock within the middle and upper Owen Group sediments marks the end of the hydrothermal system. Around the entire edge of the Mt Lyell field, there is a variation in the white mica composition from proximal muscovite to distal phengite that represents the neutralisation of the hydrothermal fluid by fluid–wall rock interaction.  相似文献   
2.
3.
The Mediterranean region, source of so much knowledge in the world, is the site of major advances in sedimentary geology. In addition to its economic and cultural richness, the geological and geographic diversity of the region, plus its active geological processes, have long stimulated indigenous scholars, along with attracting talented outsiders such as Steno, Lyell, Walther, Kuenen and Bagnold. Since classical Hellenic times, debates about the origin of fossils and the changing positions of sea-level served as catalysts for studies of sediments, sedimentary rocks and ancient life. The presence of geologically young and easily interpreted marine shell beds in many Mediterranean coastal areas adjacent to their modern analogues was a particular stimulus for progress in sedimentary geology, for example, the very advanced stratigraphic ideas of Leonardo da Vinci, expressed solely in his unpublished notebooks. Impeding progress was the geological complexity of facies, faunas and structure in the circum-Mediterranean Alpine belts. Once the secrets of these were unlocked, however, the Mediterranean region became the source of major discoveries about syn-sedimentary tectonics, carbonate platforms, pelagic and anoxic sediments, turbidites, evaporites, aeolian processes, cyclostratigraphy, magnetic stratigraphy and impact events. In many of these Mediterranean discoveries, the critical element is the occurrence of extensive Mesozoic-Cenozoic pelagic successions whose precise age dating was made possible by pioneering biostratgraphic studies using microfossils.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号