首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   204篇
  免费   58篇
  国内免费   116篇
测绘学   5篇
地球物理   76篇
地质学   287篇
海洋学   3篇
天文学   1篇
综合类   1篇
自然地理   5篇
  2024年   1篇
  2023年   5篇
  2022年   4篇
  2021年   7篇
  2020年   13篇
  2019年   7篇
  2018年   10篇
  2017年   12篇
  2016年   11篇
  2015年   13篇
  2014年   15篇
  2013年   24篇
  2012年   9篇
  2011年   10篇
  2010年   13篇
  2009年   17篇
  2008年   30篇
  2007年   28篇
  2006年   22篇
  2005年   22篇
  2004年   22篇
  2003年   18篇
  2002年   6篇
  2001年   6篇
  2000年   9篇
  1999年   9篇
  1998年   5篇
  1997年   12篇
  1996年   5篇
  1995年   3篇
  1994年   3篇
  1993年   3篇
  1991年   1篇
  1989年   2篇
  1983年   1篇
排序方式: 共有378条查询结果,搜索用时 489 毫秒
1.
青藏高原拉萨地块西部赛利普地区新生代火山岩依据主量元素可划分为超钾质、钾质和钙碱性系列,主要的岩石类型为粗面安山岩、粗面岩,一个超钾质岩石的40Ar-39Ar年龄为17.58Ma,指示出火山活动为中新世.超钾质、钾质和钙碱性火山岩都显示出富集LREE及LILE(Th、U)、亏损HFSE(Nb、Ta、Ti)的特征.超钾质火山岩具有较高的K2O(6.31%~8.55%)、MgO(6.75%~8.96%)、Cr(270.7×10-6~460.4×10-6)、Ni(142.3×10-6~233.9×10-6)含量,较高的(87Sr/86Sr)i(0.71883~0.72732)和较低的εNd(-14.78~-15.37),指示可能起源于一个前期亏损并经后期俯冲作用改造的富钾的方辉橄榄岩富集地幔源区.钾质火山岩具有比超钾质火山岩低的K2O、MgO、Cr、Ni含量以及高的Ba、Sr含量,初始87Sr/86Sr为0.71553~0.71628,初始143Nd/144Nd为0.51197~0.51198,在空间上与超钾质火山岩共生,可能是前者母岩浆的演化产物.钙碱性火山岩具有较高的Sr(881.7×10-6~1309.2×10-6)、Sr/Y比值(50~108)和较低的Y(12.05×10-6~18.02×10-6),明显亏损重稀土Yb(0.93×10-6~1.30×10-6),类似于典型的埃达克质岩成分特征但相对高钾,并具有相对低的(87Sr/86Sr);(0.70928~0.71374)以及高的εNd(-7.90~-10.91),指示起源于富钾增厚下地壳物质的部分熔融.区域上拉萨地块超钾质岩、钾质岩与N-S向地堑系在空间上共存、时间上相吻合,由此本文认为拉萨地块中新世钾质.超钾质岩和南北向地堑系的形成可能与中新世早期北向俯冲的印度大陆岩石圈断离有关.  相似文献   
2.
The planet Mars lacks, today, a planetary, dynamic magnetic field, but strong, intense, localized magnetic fields of lithospheric origin, one to two orders of magnitude larger than the terrestrial lithospheric field, are present. This lithospheric magnetic field is the result of magnetization processes in the presence of a magnetic dynamo and of demagnetization processes after the dynamo shutdown, such as impact or volcanoes. This crude scenario can be more accurately specified by interpreting global and local models of the current magnetic field of Mars. Some specific areas are studied, including the intensely magnetized Terra Sirenum, as well as the magnetic anomaly associated with Apollinaris Patera. Magnetic minerals could be of primary and/or secondary origin; this latter would imply an early hydration of a basaltic crust. A scenario, in which Mars experienced a major polar wander due to the Tharsis bulge, prior to the cessation of its dynamo, is proposed and discussed.  相似文献   
3.
洪大卫  王涛  童英  王晓霞 《地学前缘》2003,10(3):231-256
近年来的研究证实 ,华北地台和大别—苏鲁造山带的中生代花岗岩与同时代的镁铁质超镁铁质岩有类似的Sr、Nd同位素特点 ,许多花岗岩和火山岩还具有类似埃达克岩的地球化学性质。在此基础上 ,根据现已积累的大量Sr、Nd同位素资料 ,从整个华北地台岩石圈的角度论证了中生代岩石圈地幔富集的性质、富集地幔发生的时代及其形成机制 ,进而探讨了岩浆活动的动力学机制 ,指出本区岩石圈富集地幔的形成是在Pangea超大陆裂解时岩石圈大规模拆沉减薄 ,被拆沉的太古宙古老地壳重循环进入地幔改变了地幔成分所致 ,说明超大陆裂解、岩石圈大规模拆沉减薄和富集地幔形成之间有密切的成因联系 ,超大陆裂解伴随着大陆地壳生长和消亡 (重循环 )的大体平衡。结合全球地震层析资料 ,进一步探讨了由俯冲大洋残片转化的下地壳同古老克拉通地壳物质在花岗岩源区中的重要意义。  相似文献   
4.
盆地岩石圈结构与油气成藏及分布   总被引:5,自引:0,他引:5       下载免费PDF全文
本文综述了大陆岩石圈研究现状和克拉通盆地、裂谷盆地和前陆盆地的岩石圈结构特征,指出在古裂谷、褶皱带或区域性深断裂等陆壳构造薄弱带上发育起来的多期叠合盆地,具有很好的含油气前景。大型含油气盆地往往存在地幔上隆、地壳减薄和地壳内低速层,盆地基底沉降与盖层沉积厚度较大。适度的后期构造活动改造和岩浆活动有利于沉积盆地内油气生成与保存。  相似文献   
5.
Wencai Yang   《Tectonophysics》2003,369(3-4):219-230
Recent 24 s deep seismic reflection records revealed five flat reflectors in the lithospheric mantle in Eastern China. With increasing depth, they are named M1 to M5 and can be seen on both field single-shot and stacked records. Reflector M1 corresponds to the Moho discontinuity, whereas M5 may be the reflection from the bottom of the current lithosphere, which is about 78 km deep according to geothermal measurements. The other three reflectors seem peculiar and might result from interactions between the lithosphere and deeper mantle. Based on lithological and geochemical data, it is suggested that the lithosphere has been thinned from about 150 km to about 60 km in the Late Mesozoic, and then has been thickened to about 78 km during the Cenozoic. The thinning process produced a granulite layer in the old lower crust caused by magmatic underplating, whereas an eclogite layer formed beneath owing to the subduction of the Paleo-Tethys and Yangtze Craton during the Permian and Early Mesozoic. Reflector M2 at about 12 s two-way traveltime (TWT) might result from the Paleozoic Moho, which represents the boundary between the previous granulite and eclogite facies. Reflector M3 at about 14 s might correspond to the bottom of the eclogite layer, beneath which the old lithospheric mantle remained. The old and the newly developed mantle may have different compositions, resulting in reflector M4. The multi-layered mantle reflectors demonstrate a mantle structure that possibly correlates with the lithospheric thinning process that occurred in Eastern China during the Late Mesozoic. The discovery of multi-layered mantle reflectors in the studied areas indicates a high heterogeneity of the upper mantle. Reflection seismology with improved technology, together with velocity and resistivity imaging and rock-physics measurements, can provide more details of the heterogeneity and related dynamic processes that occurred in the lithospheric mantle.  相似文献   
6.
青藏高原及其邻区岩石层三维密度结构   总被引:17,自引:5,他引:17       下载免费PDF全文
搜集了青藏高原及其邻近区域的S波速度三维层析成像结果和2万多个实测重力点资料,将重力资料进行各种改正并网格化为30′×30′的布格重力异常.首先采用密度差与S波速度差之间的经验关系式,建立青藏地区岩石层密度的初始模型,再利用布格重力异常进行阻尼最小二乘法反演,得到青藏地区岩石层三维密度分布结果.反演结果表明:(1)青藏高原岩石层密度分布不仅在纵向上不均匀,而且在横向存在明显的不均匀.在深度10-70km范围内,高原整体呈低密度特性,在50-70km深度范围内低密度特征更加突出,与周缘地区存在0,1g/cm3的密度差.而在90-110km深度范围内,高原岩石层地幔显示密度高.(2)岩层密度分布与大地构造有明显相关的分区性,显示出青藏块体、巴颜喀拉块体、塔里木块体和印度块体.  相似文献   
7.
云南岩石圈热结构   总被引:11,自引:0,他引:11  
周真恒  邓万明 《中国地震》1997,13(3):213-222
本文探讨了云南深部热流及岩石圈地温分布的横向变化特征,并将岩石圈热结构概括为3种类型;典型现代构造活动区热结构,中间过渡型地质区热结构和稳定地质区热结构。最后,简单讨论了地热与地震活动的关系。  相似文献   
8.
辽西地区中侏罗世海房沟组火山岩的岩石共生组合为粗安岩粗面岩安山岩英安岩 ,属于高钾钙碱性钙碱性火山岩系 ,全岩Rb_Sr等时线年龄为 177.2± 2 8.0Ma。岩石总体上反映出高Al高Na特点 ,SiO2 ≥ 5 6 .99% ,Al2 O3 ≥ 15 .4 5 % ,Na2 O/K2 O≥ 1.35。稀土元素分馏明显 ,(La/Yb) N≥ 14 .80 ,(Ho/Yb) N≥ 1.15 ,贫Yb、Y(Yb≤ 1.4 2× 10 -6,Y≤ 15 .18× 10 -6) ,基本无Eu负异常 (0 .86~ 1.0 3) ,明显亏损Rb、Nb、Zr、Ti,而Sr、Ba、K及LREE富集 ,Rb/Sr值均小于 0 .1,地球化学特征与埃达克岩十分类似 ,属埃达克质岩。Sr、Pb和Nd同位素资料反映出这套火山岩的源岩较深 ,可能为古老的下地壳中基性变质岩部分熔融产物。研究表明 :海房沟组火山岩形成于板内环境 ,与太平洋板块俯冲没有直接关系 ;辽西地区中生代构造应力场的重大转换、广泛的岩浆活动和大规模断陷盆地群的形成与岩石圈拆沉作用密切相关。海房沟组埃达克质岩的确认对探讨辽西地区火山岩浆起源、壳幔相互作用及大陆动力学背景具有重要意义。  相似文献   
9.
Seismic reflection and refraction data were collected west of New Zealand's South Island parallel to the Pacific–Australian Plate boundary. The obliquely convergent plate boundary is marked at the surface by the Alpine Fault, which juxtaposes continental crust of each plate. The data are used to study the crustal and uppermost mantle structure and provide a link between other seismic transects which cross the plate boundary. Arrival times of wide-angle reflected and refracted events from 13 recording stations are used to construct a 380-km long crustal velocity model. The model shows that, beneath a 2–4-km thick sedimentary veneer, the crust consists of two layers. The upper layer velocities increase from 5.4–5.9 km/s at the top of the layer to 6.3 km/s at the base of the layer. The base of the layer is mainly about 20 km deep but deepens to 25 km at its southern end. The lower layer velocities range from 6.3 to 7.1 km/s, and are commonly around 6.5 km/s at the top of the layer and 6.7 km/s at the base. Beneath the lower layer, the model has velocities of 8.2–8.5 km/s, typical of mantle material. The Mohorovicic discontinuity (Moho) therefore lies at the base of the second layer. It is at a depth of around 30 km but shallows over the south–central third of the profile to about 26 km, possibly associated with a southwest dipping detachment fault. The high, variable sub-Moho velocities of 8.2 km/s to 8.5 km/s are inferred to result from strong upper mantle anisotropy. Multichannel seismic reflection data cover about 220 km of the southern part of the modelled section. Beneath the well-layered Oligocene to recent sedimentary section, the crustal section is broadly divided into two zones, which correspond to the two layers of the velocity model. The upper layer (down to about 7–9 s two-way travel time) has few reflections. The lower layer (down to about 11 s two-way time) contains many strong, subparallel reflections. The base of this reflective zone is the Moho. Bi-vergent dipping reflective zones within this lower crustal layer are interpreted as interwedging structures common in areas of crustal shortening. These structures and the strong northeast dipping reflections beneath the Moho towards the north end of the (MCS) line are interpreted to be caused by Paleozoic north-dipping subduction and terrane collision at the margin of Gondwana. Deeper mantle reflections with variable dip are observed on the wide-angle gathers. Travel-time modelling of these events by ray-tracing through the established velocity model indicates depths of 50–110 km for these events. They show little coherence in dip and may be caused side-swipe from the adjacent crustal root under the Southern Alps or from the upper mantle density anomalies inferred from teleseismic data under the crustal root.  相似文献   
10.
Creation of the Cocos and Nazca plates by fission of the Farallon plate   总被引:4,自引:0,他引:4  
Peter Lonsdale   《Tectonophysics》2005,404(3-4):237-264
Throughout the Early Tertiary the area of the Farallon oceanic plate was episodically diminished by detachment of large and small northern regions, which became independently moving plates and microplates. The nature and history of Farallon plate fragmentation has been inferred mainly from structural patterns on the western, Pacific-plate flank of the East Pacific Rise, because the fragmented eastern flank has been subducted. The final episode of plate fragmentation occurred at the beginning of the Miocene, when the Cocos plate was split off, leaving the much reduced Farallon plate to be renamed the Nazca plate, and initiating Cocos–Nazca spreading. Some Oligocene Farallon plate with rifted margins that are a direct record of this plate-splitting event has survived in the eastern tropical Pacific, most extensively off northern Peru and Ecuador. Small remnants of the conjugate northern rifted margin are exposed off Costa Rica, and perhaps south of Panama. Marine geophysical profiles (bathymetric, magnetic and seismic reflection) and multibeam sonar swaths across these rifted oceanic margins, combined with surveys of 30–20 Ma crust on the western rise-flank, indicate that (i) Localized lithospheric rupture to create a new plate boundary was preceded by plate stretching and fracturing in a belt several hundred km wide. Fissural volcanism along some of these fractures built volcanic ridges (e.g., Alvarado and Sarmiento Ridges) that are 1–2 km high and parallel to “absolute” Farallon plate motion; they closely resemble fissural ridges described from the young western flank of the present Pacific–Nazca rise. (ii) For 1–2 m.y. prior to final rupture of the Farallon plate, perhaps coinciding with the period of lithospheric stretching, the entire plate changed direction to a more easterly (“Nazca-like”) course; after the split the northern (Cocos) part reverted to a northeasterly absolute motion. (iii) The plate-splitting fracture that became the site of initial Cocos–Nazca spreading was a linear feature that, at least through the 680 km of ruptured Oligocene lithosphere known to have avoided subduction, did not follow any pre-existing feature on the Farallon plate, e.g., a “fracture zone” trail of a transform fault. (iv) The margins of surviving parts of the plate-splitting fracture have narrow shoulders raised by uplift of unloaded footwalls, and partially buried by fissural volcanism. (v) Cocos–Nazca spreading began at 23 Ma; reports of older Cocos–Nazca crust in the eastern Panama Basin were based on misidentified magnetic anomalies.There is increased evidence that the driving force for the 23 Ma fission of the Farallon plate was the divergence of slab-pull stresses at the Middle America and South America subduction zones. The timing and location of the split may have been influenced by (i) the increasingly divergent northeast slab pull at the Middle America subduction zone, which lengthened and reoriented because of motion between the North America and Caribbean plates; (ii) the slightly earlier detachment of a northern part of the plate that had been entering the California subduction zone, contributing a less divergent plate-driving stress; and (iii) weakening of older parts of the plate by the Galapagos hotspot, which had come to underlie the equatorial region, midway between the risecrest and the two subduction zones, by the Late Oligocene.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号