首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
  国内免费   2篇
地球物理   1篇
地质学   16篇
综合类   2篇
自然地理   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2010年   1篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2004年   6篇
  2003年   2篇
  2001年   1篇
  1995年   1篇
排序方式: 共有20条查询结果,搜索用时 62 毫秒
1.
Whole-rock Pb isotopic signatures and U/Pb geochronology refute a Rodinian correlation of northeastern Laurentia and proto-Andean Amazonia. According to this previously proposed model, the Labrador–Scotland–Greenland Promontory (LSGP) of northeastern Laurentia collided with the proto-Andean margin of Amazonia, at the Arica Embayment, during the Grenville/Sunsás Orogeny (ca. 1.0 Ga). Links between the two margins were based upon the correlation of the LSGP with Arequipa-Antofalla Basement (AAB), a Proterozoic block along the proto-Andean margin of Amazonia adjacent to the Arica Embayment. Specifically, similarities in 1.8–1.0 Ga basement rocks in both regions suggested that the AAB was originally a piece of the LSGP. Furthermore, similarities in unique, post-collisional, but pre-rift, glacial sedimentary sequences also supported a link between the AAB and LSGP.Tests of these apparent similarities fail to support correlation of the AAB and the LSGP and, thus, eliminate a direct link between northeastern Laurentia and southwestern Amazonia in Rodinia. However, Pb isotopic compositions and U/Pb geochronology provide the basis for two new correlations, namely, (1) the ca. 1.3–1.0 Ga basement in the central and southern Appalachians may be an allochthonous block that was transferred to Laurentia from Amazonia at ca. 1.0 Ga, and (2) an allochthonous AAB may be a piece of the Kalahari Craton that was transferred to Amazonia at ca. 1.0 Ga. Based on these new correlations and a previously proposed Grenvillian connection between southern Laurentia (Llano) and Kalahari, we propose that Amazonia may have collided with a contiguous southeastern Laurentia/Kalahari margin at ca. 1.0 Ga.  相似文献   
2.
Zircons in basement rocks from the eastern Wyoming province (Black Hills, South Dakota, USA) have been analyzed by ion microprobe (SHRIMP) in order to determine precise ages of Archean tectonomagmatic events. In the northern Black Hills (NBH) near Nemo, Phanerozoic and Proterozoic (meta)sedimentary rocks are nonconformably underlain by Archean biotite–feldspar gneiss (BFG) and Little Elk gneissic granite (LEG), both of which intrude older schists. The Archean granitoid gneisses exhibit a pervasive NW–SE-trending fabric, whereas an earlier NE–SW-trending fabric occurs sporadically only in the BFG, which is intruded by the somewhat younger LEG. Zircon crystals obtained from the LEG and BFG exhibit double terminations, oscillatory zoning, and Th/U ratios of 0.6±0.3—thereby confirming a magmatic origin for both lithologies. In situ analysis of the most U–Pb concordant domains yields equivalent 207Pb/206Pb ages (upper intercept, U–Pb concordia) of 2559±6 and 2563±6 Ma (both ±2σ) for the LEG and BFG, respectively, which constrains a late Neoarchean age for sequential pulses of magmatism in the NBH. Unzoned (in BSE) patches of 2560 Ma zircon commonly truncate coeval zonation in the same crystals with no change in Th/U ratio, suggesting that deuteric, fluid-assisted recrystallization accompanied post-magmatic cooling. A xenocrystic core of magmatic zircon observed in one LEG zircon yields a concordant age of 2894±6 Ma (±2σ). This xenocryst represents the oldest crustal material reported thus far in the Black Hills. Whether this older zircon originated as unmelted residue of 2900 Ma crust that potentially underlies the Black Hills or as detritus derived from 2900 Ma crustal sources in the Wyoming province cannot be discerned. In the southern Black Hills (SBH), the peraluminous granite at Bear Mountain (BMG) of previously unknown age intrudes biotite–plagioclase schist. Zircon crystals from the BMG are highly metamict and altered, but locally preserve small domains suitable for in situ analysis. A U–Pb concordia upper intercept age of 2596±11 Ma (±2σ) obtained for zircon confirms both the late Neoarchean magmatic age of the BMG and a minimum age for the schist it intrudes. Taken together, these data indicate that the Neoarchean basement granitoids were emplaced at 2590–2600 Ma (SBH) and 2560 Ma (NBH), most likely in response to subduction associated with plate convergence (final assembly of supercontinent Kenorland?). In contrast, thin rims present on some LEG–BFG zircons exhibit strong U–Pb discordance, high common Pb, and low Th/U ratios—suggesting growth or modification under hydrothermal conditions, as previously suggested for similar zircons from SE Wyoming. The LEG–BFG zircon rims yield a nominal upper intercept date of 1940–2180 Ma, which may represent a composite of multiple rifting events known to have affected the Nemo area between 2480 and 1960 Ma. Together, these observations confirm the existence of a Paleoproterozoic rift margin along the easternmost Wyoming craton. Moreover, the 2480–1960 Ma time frame inferred for rifting in the Black Hills (Nemo area) corresponds closely to a 2450–2100 Ma time frame previously inferred for the fragmentation of supercontinent Kenorland.  相似文献   
3.
Continental rift systems and anorogenic magmatism   总被引:1,自引:0,他引:1  
Precambrian Laurentia and Mesozoic Gondwana both rifted along geometric patterns that closely approximate truncated-icosahedral tessellations of the lithosphere. These large-scale, quasi-hexagonal rift patterns manifest a least-work configuration. For both Laurentia and Gondwana, continental rifting coincided with drift stagnation, and may have been driven by lithospheric extension above an insulated and thermally expanded mantle. Anorogenic magmatism, including flood basalts, dike swarms, anorthosite massifs and granite-rhyolite provinces, originated along the Laurentian and Gondwanan rift tessellations. Long-lived volcanic regions of the Atlantic and Indian Oceans, sometimes called hotspots, originated near triple junctions of the Gondwanan tessellation as the supercontinent broke apart. We suggest that some anorogenic magmatism results from decompression melting of asthenosphere beneath opening fractures, rather than from random impingement of hypothetical deep-mantle plumes.  相似文献   
4.
5.
万天丰  朱鸿 《现代地质》2007,21(1):1-13
在尊重比较可靠的、测试精度较高的地块古地磁数据,重视生物古地理与地质构造演化史的相似性和协调性等原则的基础上,笔者编制了中国大陆及邻区各陆块古生代和三叠纪的古地磁数据表,并采用类似的比例尺,将中国各陆块放到相应的全球古大陆复原图上去。由此可以清晰地看出,在古生代早期全球各大陆的主要部分都位于赤道附近及南半球,大致表现为沿纬度、呈东西向排列的特征,中国及邻区的小陆块群在古生代始终都处在劳伦大陆、西伯利亚与冈瓦纳大陆之间;随着西伯利亚大陆的快速北移,在劳伦大陆与冈瓦纳大陆的西部地区发生南北向拼合,亚皮特斯洋和里克洋的消亡,到古生代晚期形成统一的泛大陆;而冈瓦纳大陆的东部(澳大利亚和印度等)则逐渐向南移动、离散,地壳张开,构成古特提斯洋;中国及邻区的小陆块群则一直处在古特提斯洋中,保持离散状态,总体上缓慢地向北运移,并逐渐转为近南北向的排列方式,石炭纪到三叠纪才在天山-兴安岭、昆仑山、秦岭-大别、金沙江和绍兴-十万大山等地段发生一系列局部性的陆陆碰撞,使中国大陆地块的大部分逐渐并入欧亚大陆。  相似文献   
6.
U–Pb baddeleyite ages of 1592 ± 3 and 1590 ± 4 Ma are reported for paleomagnetic sites in sheets and dykes of Western Channel Diabase (WCD) that intrude Proterozoic rocks of the flat-lying Hornby Bay Group in the Hornby Bay basin and the deformed volcanic-plutonic Great Bear Magmatic Zone of Wopmay orogen of northwestern Laurentia. A published WCD paleomagnetic pole at 9°N, 115°W (A95 = 6°) has been demonstrated primary. The new ages indicate that the WCD pole falls midway in time between poles for the 1.74 Ga Cleaver dykes and 1.48–1.42 Ga Elsonian-aged plutons, filling an important gap in the Proterozoic apparent polar wander path (APWP) for Laurentia. The WCD pole can be compared with poles reported from similar-aged magmatic units on other cratons in order to test paleocontinental reconstructions. A comparison of the Laurentian WCD pole with primary ca. 1.63 Ga and ca. 1.575 Ga poles for Baltica, along with an earlier comparison of precisely dated 1.27–1.255 Ga poles for Laurentia and Baltica, suggests that the two cratonic blocks drifted as a single entity with Baltica adjacent to eastern Greenland during the ca. 1.59–1.27 Ga interval. On the basis of less well constrained ca. 1.84–1.83 Ga poles from Laurentia and Baltica, it is possible that this reconstruction existed as early as ca. 1.83 Ga. The WCD is the same age as Wernecke breccias of the Wernecke and Ogilvie Mountains of northwestern Laurentia and bimodal Gawler Range Volcanics (GRV) and related Olympic Dam breccias of the Gawler craton. It has been proposed by others that the Gawler craton lay adjacent to northwestern Laurentia at 1.59 Ga, with the Olympic Dam and Wernecke breccias forming a large hydrothermal province. The primary WCD pole provides an opportunity to test Laurentia–Gawler craton reconstructions at 1.59 Ga. A paleopole has been reported for the GRV, although its primary or secondary nature is open to interpretation. If primary, or if acquired as an overprint during the later stages of 1.60–1.58 Ga Hiltaba-GRV magmatism, then a position for the Gawler craton adjacent to northwestern Laurentia is permitted. If the GRV pole is a later secondary overprint then a reliable comparison with Laurentian poles cannot be made.  相似文献   
7.
A comparison of late Mesoproterozoic palaeomagnetic poles from the Kalahari craton and its correlative Grunehogna craton in East Antarctica shows that the Kalahari–Grunehogna craton straddled the palaeo-Equator and underwent no azimuthal rotation between ca. 1130 and 1105 Ma. Comparison of the Kalahari palaeopoles with the Laurentia APWP between 1130 and 1000 Ma shows that there was a latitudinal separation of 30±14° between Kalahari and the Llano–West Texas margin of Laurentia at ca. 1105 Ma. The Kalahari craton could have converged with southwestern Laurentia between 1060 and 1030 Ma to become part of Rodinia by 1000 Ma. In Rodinia, the Kalahari craton lay near East Antarctica with the Namaqua–Natal orogenic belt facing outboard and away from the Laurentian craton.  相似文献   
8.
IGCP440"罗迪尼亚超大陆汇聚与裂解"项目2003年度工作进展   总被引:2,自引:0,他引:2  
借助于最新的地质、同位素年代学、地球化学和航空地球物理资料,对全球各地原属于罗迪尼亚大陆组成单元的构造环境、地质事件特征及其演化历史进行了探讨,并提出一些新见解和成因模式.认为东欧克拉通在1.7~0.9Ga有复杂的演化历史一个新的劳仑古陆和西伯利亚的重建发生在1 050~1 000Ma;中、新元古代南美洲造山拼贴的岩石构造历程构成南美陆台的西部边界非洲克拉通是古元古代/太古宙陆块汇聚收敛的结果;东南极的一部分在中元古时期附属于非洲南部;印度西北的新元古代长英质岩浆事件构成了罗迪尼亚大陆的西部边缘;前格林威尔时期的劳仑古陆已被确定为古元古代末期的一个主要大陆;在罗迪尼亚大陆中,华南可能位于劳仑古陆南部和澳大利亚东部之间;塔里木克拉通和扬子克拉通相连接或邻近.据此检验了关于Pisarevsky提出的罗迪尼亚超大陆汇聚和裂解的新模式.新模式提出初始裂解是沿着劳仑古陆的西部边缘,与大西洋北部相类似.同时认为一些大陆(印度、刚果/圣·弗朗西斯科)可能不是罗迪尼亚超大陆的组成部分.  相似文献   
9.
The intraplate Ancestral Rocky Mountains of western North America extend from British Columbia, Canada, to Chihuahua, Mexico, and formed during Early Carboniferous through Early Permian time in response to continent–continent collision of Laurentia with Gondwana—the conjoined masses of Africa and South America, including Yucatán and Florida. Uplifts and flanking basins also formed within the Laurentian Midcontinent. On the Gondwanan continent, well inboard from the marginal fold belts, a counterpart structural array developed during the same period. Intraplate deformation began when full collisional plate coupling had been achieved along the continental margin; the intervening ocean had been closed and subduction had ceased—that is, the distinction between upper versus lower plates became moot. Ancestral Rockies deformation was not accompanied by volcanism. Basement shear zones that formed during Mesoproterozoic rifting of Laurentia were reactivated and exerted significant control on the locations, orientations, and modes of displacement on late Paleozoic faults.Ancestral Rocky Mountain uplifts extend as far south as Chihuahua and west Texas (28° to 33°N, 102° to 109°W) and include the Florida-Moyotes, Placer de Guadalupe–Carrizalillo, Ojinaga–Tascotal and Hueco Mountain blocks, as well as the Diablo and Central Basin Platforms. All are cored with Laurentian Proterozoic crystalline basement rocks and host correlative Paleozoic stratigraphic successions. Pre-late Paleozoic deformational, thermal, and metamorphic histories are similar as well. Southern Ancestral Rocky Mountain structures terminate along a line that trends approximately N 40°E (present coordinates), a common orientation for Mesoproterozoic extensional structures throughout southern to central North America.Continuing Tien Shan intraplate deformation (Central Asia) has created an analogous array of uplifts and basins in response to the collision of India with Eurasia, beginning in late Miocene time when full coupling of the colliding plates had occurred. As in the Laurentia–Gondwana case, structures of similar magnitude and spacing to those in Eurasia have developed in the Indian plate. Within the present orogen two ancient suture zones have been reactivated—the early Paleozoic Terskey zone and the late Paleozoic Turkestan suture between the Siberian and East Gondwanan cratons. Inverted Proterozoic to early Paleozoic rift structures and passive-margin deposits are exposed north of the Terskey zone. In the Alay and Tarim complexes, Vendian to mid-Carboniferous passive-margin strata and the subjacent Proterozoic crystalline basement have been uplifted. Data on Tien Shan uplifts, basins, structural arrays, and deformation rates guide paleotectonic interpretations of ancient intraplate mountain belts. Similarly, exhumed deep crustal shear zones in the Ancestral Rockies offer insight into partitioning and reorientation of strain during contemporary intraplate deformation.  相似文献   
10.
The Middle to Upper Ordovician foreland succession of the Ottawa Embayment in central Canada is divided into nine transgressive‐regressive sequences that defines net deepening of a platform succession over ~15 m.y. from peritidal to outer ramp settings, then a return to peritidal conditions over ~3 m.y. related to basin filling by orogen‐derived siliciclastics. With a backdrop of net eustatic rise through the Middle to Late Ordovician, there are several different expressions of structural influence on sequence development in the embayment. During the Middle Ordovician (Darriwilian), foreland‐basin initiation was marked by regional onlap with abundant synsedimentary deformation across a faulted trailing‐margin platform interior; subsequent craton‐interior uplift resulted in voluminous influx of siliciclastics contemporary with local structurally influenced local channelization; then, a formation of a platform‐interior shale basin defines continued intrabasin tectonism. During the Late Ordovician (Sandbian, early Katian), structural influence was superimposed on sea‐level rise as indicated by renewed local development of a platform‐interior shale basin; differential subsidence and thickness variation of platform carbonate successions; abrupt deepening across shallow‐water shoal facies; and, micrograben development coincident with foreland‐platform drowning. These stratigraphic patterns are far‐field expressions of distal orogen development amplified in the platform interior through basement reactivation along an inherited buried Precambrian fault system. Comparison of Upper Ordovician (Sandbian‐lower Katian) sequence stratigraphy in the Ottawa Embayment with eustatic frameworks defined for the Appalachian Basin reveals greater regional variation associated with Sandbian sequences compared to regional commonality in base level through the early Katian.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号