首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   175篇
  免费   8篇
  国内免费   9篇
测绘学   146篇
大气科学   4篇
地球物理   9篇
地质学   17篇
海洋学   5篇
天文学   2篇
综合类   4篇
自然地理   5篇
  2023年   2篇
  2022年   5篇
  2021年   1篇
  2020年   12篇
  2019年   6篇
  2018年   4篇
  2017年   16篇
  2016年   6篇
  2015年   11篇
  2014年   20篇
  2013年   23篇
  2012年   1篇
  2011年   15篇
  2010年   9篇
  2009年   11篇
  2008年   8篇
  2007年   11篇
  2006年   3篇
  2005年   4篇
  2004年   2篇
  2003年   8篇
  2002年   5篇
  2001年   2篇
  2000年   3篇
  1999年   3篇
  1998年   1篇
排序方式: 共有192条查询结果,搜索用时 15 毫秒
1.
利用高光谱数据进行植被生化成分反演方法研究   总被引:3,自引:0,他引:3  
高光谱数据包含着丰富光谱信息,能够定量地分析物质成分[1]。由高光谱数据,可以运用多元逐步线性回归方法反演植被生化组分含量,从而达到监测植被生长状况的目的[2]。本文具体介绍了多元逐步线性回归方法,及其在氮、木质素和纤维素含量估算中的应用。  相似文献   
2.
煤田火区烧变岩光谱特征分析及其信息提取   总被引:1,自引:0,他引:1  
中国北方煤田煤层自燃现象非常严重.利用遥感手段可以快速实现火区的动态监测,及时为灭火工程提供信息.烧变岩作为火区的地表指示性特征,是火区解译最直观的信息.本文从烧变岩的反射光谱曲线特征入手,对几种提取烧变岩信息的方法进行比较,从而确定解译烧变岩的最佳方法,为圈定火区的范围和位置奠定基础.  相似文献   
3.
探索利用高光谱数据的岩性填图新方法是遥感地质应用领域的重要需求之一。本文运用随机森林方法和EO-1Hyperion高光谱数据,对新疆塔里木西北部柯坪地区的局部区域进行岩性分类,并对相关问题进行分析。分别利用光谱特征以及加入光谱一阶导数特征进行岩性分类,并对不同特征对岩性分类的重要性进行分析,同时与现有的基于光谱角制图方法(SAM)进行比较。结果表明,与SAM方法相比,随机森林方法得到了更高精度的岩性分类结果,是一种有效可行的岩性分类方法。根据特征重要性的排序,蓝绿光波段、短波红外波段以及相应的一阶导数特征对研究区Hyperion数据的沉积岩岩性分类贡献更大。  相似文献   
4.
An unsupervised machine-learning workflow is proposed for estimating fractional landscape soils and vegetation components from remotely sensed hyperspectral imagery. The workflow is applied to EO-1 Hyperion satellite imagery collected near Ibirací, Minas Gerais, Brazil. The proposed workflow includes subset feature selection, learning, and estimation algorithms. Network training with landscape feature class realizations provide a hypersurface from which to estimate mixtures of soil (e.g. 0.5 exceedance for pixels: 75% clay-rich Nitisols, 15% iron-rich Latosols, and 1% quartz-rich Arenosols) and vegetation (e.g. 0.5 exceedance for pixels: 4% Aspen-like trees, 7% Blackberry-like trees, 0% live grass, and 2% dead grass). The process correctly maps forests and iron-rich Latosols as being coincident with existing drainages, and correctly classifies the clay-rich Nitisols and grasses on the intervening hills. These classifications are independently corroborated visually (Google Earth) and quantitatively (random soil samples and crossplots of field spectra). Some mapping challenges are the underestimation of forest fractions and overestimation of soil fractions where steep valley shadows exist, and the under representation of classified grass in some dry areas of the Hyperion image. These preliminary results provide impetus for future hyperspectral studies involving airborne and satellite sensors with higher signal-to-noise and smaller footprints.  相似文献   
5.
Information on tree species composition is crucial in forest management and can be obtained using remote sensing. While the topic has been addressed frequently over the last years, the remote sensing-based identification of tree species across wide and complex forest areas is still sparse in the literature. Our study presents a tree species classification of a large fraction of the Białowieża Forest in Poland covering 62 000 ha and being subject to diverse management regimes. Key objectives were to obtain an accurate tree species map and to examine if the prevalent management strategy influences the classification results. Tree species classification was conducted based on airborne hyperspectral HySpex data. We applied an iterative Support Vector Machine classification and obtained a thematic map of 7 individual tree species (birch, oak, hornbeam, lime, alder, pine, spruce) and an additional class containing other broadleaves. Generally, the more heterogeneous the area was, the more errors we observed in the classification results. Managed forests were classified more accurately than reserves. Our findings indicate that mapping dominant tree species with airborne hyperspectral data can be accomplished also over large areas and that forest management and its effects on forest structure has an influence on classification accuracies and should be actively considered when progressing towards operational mapping of tree species composition.  相似文献   
6.
Inland water bodies are globally threatened by environmental degradation and climate change. On the other hand, new water bodies can be designed during landscape restoration (e.g. after coal mining). Effective management of new water resources requires continuous monitoring; in situ surveys are, however, extremely time-demanding. Remote sensing has been widely used for identifying water bodies. However, the use of optical imagery is constrained by accuracy problems related to the difficulty in distinguishing water features from other surfaces with low albedo, such as tree shadows. This is especially true when mapping water bodies of different sizes. To address these problems, we evaluated the potential of integrating hyperspectral data with LiDAR (hereinafter “integrative approach”). The study area consisted of several spoil heaps containing heterogeneous water bodies with a high variability of shape and size. We utilized object-based classification (Support Vector Machine) based on: (i) hyperspectral data; (ii) LiDAR variables; (iii) integration of both datasets. Besides, we classified hyperspectral data using pixel-based approaches (K-mean, spectral angle mapper). Individual approaches (hyperspectral data, LiDAR data and integrative approach) resulted in 2–22.4 % underestimation of the water surface area (i.e, omission error) and 0.4–1.5 % overestimation (i.e., commission error).The integrative approach yielded an improved discrimination of open water surface compared to other approaches (omission error of 2 % and commission error of 0.4 %). We also evaluated the success of detecting individual ponds; the integrative approach was the only one capable of detecting the water bodies with both omission and commission errors below 10 %. Finally, the assessment of misclassification reasons showed a successful elimination of shadows in the integrative approach. Our findings demonstrate that the integration of hyperspectral and LiDAR data can greatly improve the identification of small water bodies and can be applied in practice to support mapping of restoration process.  相似文献   
7.
Most studies have the achieved rapid and accurate determination of soil organic carbon (SOC) using laboratory spectroscopy; however, it remains difficult to map the spatial distribution of SOC. To predict and map SOC at a regional scale, we obtained fourteen hyperspectral images from the Gaofen-5 (GF-5) satellite and decomposed and reconstructed the original reflectance (OR) and the first derivative reflectance (FDR) using discrete wavelet transform (DWT) at different scales. At these different scales, as inputs, we selected the 3 optimal bands with the highest weight coefficient using principal component analysis and chose the normalized difference index (NDI), ratio index (RI) and difference index (DI) with the strongest correlation with the SOC content using a contour map method. These inputs were then used to build regional-scale SOC prediction models using random forest (RF), support vector machine (SVM) and back-propagation neural network (BPNN) algorithms. The results indicated that: 1) at a low decomposition scale, DWT can effectively eliminate the noise in satellite hyperspectral data, and the FDR combined with DWT can improve the SOC prediction accuracy significantly; 2) the method of selecting inputs using principal component analysis and a contour map can eliminate the redundancy of hyperspectral data while retaining the physical meaning of the inputs. For the model with the highest prediction accuracy, the inputs were all derived from the wavelength range of SOC variations; 3) the differences in prediction accuracy among the different prediction models are small; and 4) the SOC prediction accuracy using hyperspectral satellite data is greatly improved compared with that of previous SOC prediction studies using multispectral satellite data. This study provides a highly robust and accurate method for predicting and mapping regional SOC contents.  相似文献   
8.
柴达木盆地烃蚀变矿物高光谱遥感识别研究   总被引:2,自引:0,他引:2  
高光谱遥感识别烃蚀变矿物可用于探测油气烃类微渗漏和定位地下油气藏.以有天然气分布的柴达木盆地东部三湖地区为研究区,对Hyperion高光谱数据进行重采样处理,克服了目标识别矿物不明显和传感器低信噪比的影响.通过确定烃蚀变矿物高光谱遥感探测的指示标志,采用线性光谱(SAM)拟合与光谱匹配(SAM)相结合的方法确定了影像端元对应的矿物组分.识别结果表明,合理缩减影像波段数和确定影像端元的方法,能有效提高烃蚀变矿物的高光谱遥感识别精度.  相似文献   
9.
 This paper presents a methodology to incorporate both hyperspectral properties and spatial coordinates of pixels in maximum likelihood classification. Indicator kriging of ground data is used to estimate, for each pixel, the prior probabilities of occurrence of classes which are then combined with spectral-based probabilities within a Bayesian framework. In the case study (mapping of in-stream habitats), accounting for spatial coordinates increases the overall producer's accuracy from 85.8% to 93.8%, while the Kappa statistic rises from 0.74 to 0.88. Best results are obtained using only indicator kriging-based probabilities, with a stunning overall accuracy of 97.2%. Significant improvements are observed for environmentally important units, such as pools (Kappa: 0.17 to 0.74) and eddy drop zones (Kappa: 0.65 to 0.87). The lack of benefit of using hyperspectral information in the present study can be explained by the dense network of ground observations and the high spatial continuity of field classification which might be spurious. Received: 12 April 2001 / Accepted: 7 September 2001  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号