首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   164篇
  免费   21篇
  国内免费   117篇
地球物理   9篇
地质学   274篇
综合类   5篇
自然地理   14篇
  2024年   1篇
  2023年   4篇
  2022年   4篇
  2021年   6篇
  2020年   2篇
  2019年   5篇
  2018年   11篇
  2017年   3篇
  2016年   12篇
  2015年   6篇
  2014年   11篇
  2013年   11篇
  2012年   18篇
  2011年   16篇
  2010年   4篇
  2009年   14篇
  2008年   14篇
  2007年   11篇
  2006年   20篇
  2005年   14篇
  2004年   16篇
  2003年   13篇
  2002年   7篇
  2001年   8篇
  2000年   7篇
  1999年   7篇
  1998年   5篇
  1997年   9篇
  1996年   10篇
  1995年   6篇
  1994年   10篇
  1993年   2篇
  1992年   4篇
  1991年   7篇
  1990年   1篇
  1988年   2篇
  1983年   1篇
排序方式: 共有302条查询结果,搜索用时 203 毫秒
1.
Dry valleys are a striking geographic landscape in Hengduan Mountains Region and are characterized by low rainfall, desert type of vegetation and fragile environment. Past efforts and resources have been concentrated mainly on rehabilitation of degraded ecosystem and fragile environment, particularly reforestation, while socio-economic development has been largely overlooked. Despite successes in pocket areas, the overall trend of unsustainability and environmental deterioration are continuing. It is important to understand that uplift of the Tibetan Plateau is the root cause of development of dry valleys, and development and formation of dry valleys is a natural process. Human intervention has played a secondary role in development of dry valleys and degradation of dry valleys though human intervention in many cases has speeded up environmental degradation of the dry valleys. It is important to understand that dry valleys are climatic enclaves and an integrated approach that combines rehabilitation of degraded ecosystems and socio-economic development should be adopted if the overall goal of sustainable development of dry valleys is to be achieved. Promotion of niche-based cash crops, rural energy including hydropower, solar energy, biogas and fuelwood plantation is recommended as the priority activities.  相似文献   
2.
西秦岭温泉花岗岩体岩石学特征及岩浆混合标志   总被引:14,自引:5,他引:9  
温泉花岗岩体由酸性端元的寄主岩石和暗色微细粒镁铁质包体群及基性岩墙群组成。无岩浆混合作用或岩浆混合作用较弱区段,寄主岩石以似斑状二长花岗岩为主.显示正常的花岗岩结构构造岩浆混合作用强烈区段。岩石的异常结构构造十分发育.矿物之间自形程度差异显著.常见包晶反应、包含结构、交代边、熔蚀边、交代蚕食的港湾状结构构造及交代缝合线、矿物镶边、斜长石异常环带和矿物残留等,多见指示岩浆混合的标志性矿物针状磷灰石。暗色微粒包体中多见寄主二长花岗岩中的捕掳晶。包体的形态、结构构造以及与寄主岩石强烈地成分交换等均是岩浆混合作用的标志。  相似文献   
3.
The Cauvery Shear Zone (CSZ) is a crustal-scale shear system within the Southern Granulite Terrain along the southern margin of the Archaean Dharwar craton. Structural interpretation of satellite data and field observations reveal four major shear zones within the CSZ system. They show dextral shear kinematics synchronous with a major Neoproterozoic tectono-metamorphic event (D2) associated with intracrustal melting and migmatisation. The disposition, geometry and contemporaneity of shear fabrics of the CSZ system are modelled in terms of a crustal-scale flower structure akin to transpressional and collisional orogens. In the light of recent seismic evidence for a displaced Moho structure and a mid- to lower-crustal low velocity zone, the flower structure across the CSZ may extend to mantle depths.  相似文献   
4.
The Sivamalai alkaline complex lies at the southern margin of the Cauvery Shear System that separates the Archaean and Proterozoic domains of the Southern Granulite Terrain in India. U–Pb TIMS dating of zircon from a pegmatitic syenite sample in the complex yields a concordant age of 590.2 ± 1.3 (2σ) Ma which is interpreted to date the intrusion of the alkaline rocks. A lower concordia intercept at 168 ± 210 Ma defined by two grains with high common lead may indicate post-magmatic disturbances due to recrystallisation which is also evident in the CL images of the zircons. EPMA dating of monazite from a post-kinematic pegmatite which intrudes the crystalline basement hosting the alkaline rocks yields an age of 478 ± 29 (2σ) Ma and provides a lower bracket for the main phase of tectonism in this part of the Southern Granulite Terrain. The Pan-African high-grade metamorphism and ductile deformation has thus most likely affected the alkaline rocks. This is supported by the presence of a metamorphic foliation and extensive recrystallisation textures seen in the rocks. The major and trace element concentrations measured on selected samples reveals the presence of both enriched and depleted rock types. The enriched group includes ferrosyenite and nepheline syenite while the depleted group has only nepheline syenites. The trace element depletion of some nepheline syenites is interpreted to be a result of fractional crystallization involving the removal of accessory phases like zircon, titanite, apatite and allanite.  相似文献   
5.
Ion-microprobe U–Pb zircon dating of lower-crust metasedimentary granulite are reported on samples from two localities in Europe in order to determine (a) how this environment recorded the Variscan and eo-Alpine events, and (b) whether the transition between the two orogenic cycles was continuous or separated by a gap. The samples come from enclaves hosted by Miocene volcanoes at Bournac in the French Massif Central, and from the granulitic metasedimentary basement of the Alpine Santa Lucia nappe in Corsica, on the South European paleomargin of the Ligurian branch of the Tethys Sea. The zircon ages from Bournac range between 630 and 430 Ma and between 380 and 150 Ma with a major frequency peak at 285 Ma; the zircons older than 430 Ma are interpreted as detrital, whereas those younger than 380 Ma are considered to have formed by metamorphic processes after burial in the lower crust. Zircon ages from Santa Lucia range from to 356 to 157 Ma, with exception of one inherited Archean grain, and are interpreted like the younger Bournac zircons as having been formed by metamorphic processes.

In a granulite metamorphic environment, as opposed to an anatectic environment, new zircon growth can occur in the solid state. Once Zr has been incorporated into zircon, however, it is difficult to remobilize without dissolution; thus Zr available for new zircon growth must result from the breakdown of Zr-bearing minerals during prograde and/or retrograde events. In this light, the U–Pb zircon-age probability curves are interpreted as markers for major tectonometamorphic events, as suggested by the close correspondence between peaks in the curve and geological events recorded in the upper-crust, such as magma emplacement and basin subsidence.

Evidence of a tectonometamorphic gap between the Variscan and Alpine orogeneses is provided by the Santa Lucia zircon-age probability curve, which reveals a probable interlude during the Variscan–Alpine transition between 240 and 210 Ma. Here, the peak at 240 Ma is interpreted as the very beginning of crustal extension and the low at 210 Ma as a period of quiescence prior to the formation of an active margin and oceanization.  相似文献   

6.
Mafic granulite and pyroxenite xenoliths from Cenozoic alkaline basalts at Hannuoba, Hebei Province, North China have been selected for a systematic geochemical and Sr–Nd–Pb isotopic study, which provides a unique opportunity to explore nature of the lower crust and the interaction between the continental crust and lithospheric mantle beneath an Archean craton. The major, compatible and incompatible elements and radiogenic isotopes of these xenoliths suggest great chemical heterogeneity of the lower crust beneath the Hannuoba region. Petrological and geochemical evidences indicate a clear cumulate origin, and most likely, they are related to basaltic underplating in different geological episodes. However, the Sr–Nd–Pb isotopic compositions of the xenoliths reveal a profound enriched source signature (EM I) with some influence of EM II, which implies that some portion of pre-existing, old metasomatized subcontinental lithospheric mantle could have played an important role in their genesis. It is suggested that the interaction between continental crust and subcontinental mantle as manifested by basaltic underplating would be closely related to regional tectonic episodes and geodynamic processes in the deep part of subcontinental lithospheric mantle.  相似文献   
7.
岩浆混合作用——来自甘肃北山的野外证据   总被引:4,自引:0,他引:4       下载免费PDF全文
在 1∶2 5万马鬃山幅区调填图和方法研究工作中 ,通过观察到的一些与岩浆混合模式相关的现象 ,指出暗色微粒镁铁质包体是岩浆混合作用的有利证据 ,讨论了与花岗岩侵入体相关的镁铁质小岩体混合成因的可能性 ,认为岩浆混合作用在造山带岩浆活动中是一种极为普遍的现象。  相似文献   
8.
Minor granulites (believed to be pre-Triassic), surrounded by abundant amphibolite-facies orthogneiss, occur in the same region as the well-documented Triassic high- and ultrahigh-pressure (HP and UHP) eclogites in the Dabie–Sulu terranes, eastern China. Moreover, some eclogites and garnet clinopyroxenites have been metamorphosed at granulite- to amphibolite-facies conditions during exhumation. Granulitized HP eclogites/garnet clinopyroxenites at Huangweihe and Baizhangyan record estimated eclogite-facies metamorphic conditions of 775–805 °C and ≥15 kbar, followed by granulite- to amphibolite-facies overprint of ca. 750–800 °C and 6–11 kbar. The presence of (Na, Ca, Ba, Sr)-feldspars in garnet and omphacite corresponds to amphibolite-facies conditions. Metamorphic mineral assemblages and PT estimates for felsic granulite at Huangtuling and mafic granulite at Huilanshan indicate peak conditions of 850 °C and 12 kbar for the granulite-facies metamorphism and 700 °C and 6 kbar for amphibolite-facies retrograde metamorphism. Cordierite–orthopyroxene and ferropargasite–plagioclase coronas and symplectites around garnet record a strong, rapid decompression, possibly contemporaneous with the uplift of neighbouring HP/UHP eclogites.

Carbonic fluid (CO2-rich) inclusions are predominant in both HP granulites and granulitized HP/UHP eclogites/garnet clinopyroxenites. They have low densities, having been reset during decompression. Minor amounts of CH4 and/or N2 as well as carbonate are present. In the granulitized HP/UHP eclogites/garnet clinopyroxenites, early fluids are high-salinity brines with minor N2, whereas low-salinity fluids formed during retrogression. Syn-granulite-facies carbonic fluid inclusions occur either in quartz rods in clinopyroxene (granulitized HP garnet clinopyxeronite) or in quartz blebs in garnet and quartz matrices (UHP eclogite). For HP granulites, a limited number of primary CO2 and mixed H2O–CO2(liquid) inclusions have also been observed in undeformed quartz inclusions within garnet, orthopyroxene, and plagioclase which contain abundant, low-density CO2±carbonate inclusions. It is suggested that the primary fluid in the HP granulites was high-density CO2, mixed with a significant quantity of water. The water was consumed by retrograde metamorphic mineral reactions and may also have been responsible for metasomatic reactions (“giant myrmekites”) occurring at quartz–feldspar boundaries. Compared with the UHP eclogites in this region, the granulites were exhumed in the presence of massive, externally derived carbonic fluids and subsequently limited low-salinity aqueous fluids, probably derived from the surrounding gneisses.  相似文献   

9.
U–Pb sensitive high resolution ion microprobe (SHRIMP) dating of zircons from charnockitic and garnet–biotite gneisses from the central portion of the Mozambique belt, central Tanzania indicate that the protolith granitoids were emplaced in a late Archaean, ca. 2.7 Ga, magmatic event. These ages are similar to other U–Pb and Pb–Pb ages obtained for other gneisses in this part of the belt. Zircon xenocrysts dated between 2.8 and 3.0 Ga indicate the presence of an older basement. Major and trace element geochemistry of these high-grade gneisses suggests that the granitoid protoliths may have formed in an active continental margin environment. Metamorphic zircon rims and multifaceted metamorphic zircons are dated at ca. 2.6 Ga indicating that these rocks were metamorphosed some 50–100 my after their emplacement. Pressure and temperature estimates on the charnockitic and garnet–biotite gneisses were obscured by post-peak metamorphic compositional homogenisation; however, these estimates combined with mineral textures suggest that these rocks underwent isobaric cooling to 800–850 °C at 12–14 kbar. It is considered likely that the granulite facies mineral assemblage developed during the ca. 2.6 Ga event, but it must be considered that it might instead represent a pervasive Neoproterozoic, Pan African, granulite facies overprint, similar to the ubiquitous eastern granulites further to the east.  相似文献   
10.
The formation of Ca-rich myrmekites is described in syntectonic syenites crystallized and progressively deformed under granulite facies conditions. The syenites are found in high- and low-strain zones where microstructure and mineral composition are compared. Heterogeneously distributed water-rich, late-magmatic liquids were responsible for strain partitioning into dry and wet high-strain zones at outcrop scale, where contrasting deformation mechanisms are reported. In dry high-strain zones K-feldspar and clinopyroxene are recrystallized under high-T conditions. In wet high-strain zones, the de-stabilization of clinopyroxene and pervasive replacement of relatively undeformed K-feldspar porphyroclasts by myrmekite and subordinate micrographic intergrowths indicate dissolution-replacement creep as the main deformation mechanism. The reworking of these intergrowths is observed and is considered to contribute significantly to the development of the mylonitic foliation and banding. A model is proposed for strain partitioning relating a positive feedback between myrmekite-forming reaction, continuous inflow of late-magmatic liquids and dissolution-replacement creep in the wet zone at the expenses of original mineralogy preserved in the dry zones. Melt-assisted dissolution-replacement creep in syntectonic environments under granulite-facies conditions may extend the field of operation of dissolution-replacement creep, changing significantly the rheology of the lower continental crust.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号