首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
地质学   5篇
  2021年   1篇
  2008年   2篇
  2003年   1篇
  1998年   1篇
排序方式: 共有5条查询结果,搜索用时 78 毫秒
1
1.
滇中富民县宝石洞岩溶地下河洞穴景观系统规模适中,洞内岩溶景观千姿百态,洞中有宝(玛瑙),洞外有优美的生态环境和多元民族宗教文化以及潜在的温泉资源,加上优越的交通区位,旅游要素集群度较高,具较高开发价值.文章根据宝石洞地区区域地质背景,分析了该地区区域地史演化特征,根据本次对宝石洞的实地探测成果,总结了宝石洞旅游地质特征...  相似文献   
2.
We summarize here the occurrence of a number of semiprecious stones within a major gemstone belt in the Palghat-Cauvery shear zone system close to the northern margin of the Madurai Granulite Block, southern India. The gem mineralization in this belt includes different varieties of corundum (star ruby, sapphire), cordierite (iolite), feldspar (moonstones and sunstone of various hues), beryl (emerald, aquamarine), chrysoberyl (alexandrite), kornerupine, topaz, spinel, crystal quartz and amethyst, among others. Gem mineralisation has not been directly dated, but is associated with pegmatites that crosscut rocks metamorphosed in late Neoproterozoic/Early Cambrian times. Similar aged gem mineralization occurs south of the Achankovil Shear Zone in southern India, as well as in Sri Lanka and Madagascar and strengthen the view of a broad late Neoproterozoic-early Cambrian gemstone province in central Gondwana. The ruby mineralization within this belt can be correlated with similar occurrences in eastern Madagascar, supporting a correlation between the Malagasy Betsimisaraka suture zone and the Palghat-Cauvery shear zone system in southern India.  相似文献   
3.
Potential sources for alluvial gem corundum and zircon from the Rio Mayo area, near Mercaderes, Colombia are reviewed, based on U–Pb dating of syngenetic and protogenetic mineral inclusions in corundum samples and on a zircon megacryst. Corundum recovered from the region (approx. 99% sapphire, 1% ruby) commonly shows growth banding, includes colour change stones and exhibits overlaps in colour ranges and inclusion characteristics. This suggests a contiguous genetic suite. The U–Pb dating used laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) techniques. Because of the young ages and low-U contents of the dated zircons, the acquired data required a special statistical treatment. The results from zircon, fluorapatite and allanite-(Ce) inclusions provide a corundum crystallization age of 8 to 11 Ma, in relation to northern Andean Miocene uplift and magmatism. The zircon megacryst gave a younger crystallization age of c. 0.6 Ma, unrelated to the corundum genesis. Geochemical parameters (trace element and O isotope ranges) for corundum samples suggest a metamorphic/metasomatic origin. The age data rules out corundum genesis during the Late Cretaceous ophiolitic generation, but leave open possible later metasomatic interactions with this substrate. The Cr/Ga and Ga/Mg ratios and O isotope range for the corundum fall within the known limits for metasomatic, desilicated felsic/ultramafic ‘plumasitic’ associations, suggesting a possible parental source. Allanite, extremely rare as an inclusion in corundum elsewhere, may prove a characteristic inclusion for Rio Mayo corundum.  相似文献   
4.
This classification of gem corundum (ruby and sapphire) deposits takes into consideration petrographic data, and the mode of genesis of the deposits. It is aimed at being practical and useful in the field, particularly for prospecting purposes.Deposits are classified into primary and secondary deposits. Primary deposits include igneous and metamorphic deposits. Igneous gem corundum deposits are rare and include sapphire-bearing syenites from Kenya. Emphasis is put on metamorphic deposits, that are subdivided into metamorphic s.s., metasomatic, and anatectic deposits. Many gem corundum deposits result from metasomatic processes. Small-scale metasomatism mostly involves desilication reactions between silico-aluminous rocks (pegmatites, gneisses, etc) and silica-poor rocks (ultramafites, meta-carbonates), and leads to the formation of limited-size deposits. Large-scale (diffuse) metasomatism is usually more difficult to characterize, and therefore is not separated from isochemical metamorphism in this classification. In metamorphic deposits, gem corundum results from transformation of an Al-rich and/or Si-poor protolith. Such deposits include ruby-bearing mafic granulites, ruby-bearing meta-limestones, and ruby/sapphire-bearing gneisses and granulites. An intermediate category includes anatectic deposits. Secondary deposits encompass sedimentary and volcanic (xenoclastic) occurrences. In sedimentary deposits, gem corundum occurs as clasts originating from other lithologies. In volcanic deposits, gem corundums are xenocrysts that have a range of origins.The proposed classification outlines geological environments favorable to the crystallization and distribution of gem corundum, thus facilitating prospecting and mining of this gemstone.  相似文献   
5.
宝石中包裹体分类及其意义   总被引:1,自引:0,他引:1  
刘劲鸿 《吉林地质》1998,17(2):65-69
本文简论了宝石,包裹体的概念,介绍了依据包裹体的形成序次,组成,相态,大小等进行的不同分类及其对研究成因,鉴定,评价中的重要意义。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号