首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4609篇
  免费   1398篇
  国内免费   2161篇
测绘学   4篇
大气科学   35篇
地球物理   167篇
地质学   7419篇
海洋学   234篇
天文学   52篇
综合类   192篇
自然地理   65篇
  2024年   82篇
  2023年   213篇
  2022年   260篇
  2021年   326篇
  2020年   297篇
  2019年   405篇
  2018年   365篇
  2017年   379篇
  2016年   414篇
  2015年   406篇
  2014年   416篇
  2013年   393篇
  2012年   397篇
  2011年   492篇
  2010年   376篇
  2009年   403篇
  2008年   297篇
  2007年   364篇
  2006年   285篇
  2005年   199篇
  2004年   192篇
  2003年   165篇
  2002年   129篇
  2001年   96篇
  2000年   97篇
  1999年   121篇
  1998年   61篇
  1997年   88篇
  1996年   78篇
  1995年   91篇
  1994年   66篇
  1993年   48篇
  1992年   51篇
  1991年   40篇
  1990年   29篇
  1989年   16篇
  1988年   15篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   4篇
排序方式: 共有8168条查询结果,搜索用时 12 毫秒
1.
We model the subnebulae of Jupiter and Saturn wherein satellite accretion took place. We expect each giant planet subnebula to be composed of an optically thick (given gaseous opacity) inner region inside of the planet’s centrifugal radius (where the specific angular momentum of the collapsing giant planet gaseous envelope achieves centrifugal balance, located at rCJ ∼ 15RJ for Jupiter and rCS ∼ 22RS for Saturn) and an optically thin, extended outer disk out to a fraction of the planet’s Roche-lobe (RH), which we choose to be ∼RH/5 (located at ∼150 RJ near the inner irregular satellites for Jupiter, and ∼200RS near Phoebe for Saturn). This places Titan and Ganymede in the inner disk, Callisto and Iapetus in the outer disk, and Hyperion in the transition region. The inner disk is the leftover of the gas accreted by the protoplanet. The outer disk may result from the nebula gas flowing into the protoplanet during the time of giant planet gap-opening (or cessation of gas accretion). For the sake of specificity, we use a solar composition “minimum mass” model to constrain the gas densities of the inner and outer disks of Jupiter and Saturn (and also Uranus). Our model has Ganymede at a subnebula temperature of ∼250 K and Titan at ∼100 K. The outer disks of Jupiter and Saturn have constant temperatures of 130 and 90 K, respectively.Our model has Callisto forming in a time scale ∼106 years, Iapetus in 106-107 years, Ganymede in 103-104 years, and Titan in 104-105 years. Callisto takes much longer to form than Ganymede because it draws materials from the extended, low density portion of the disk; its accretion time scale is set by the inward drift times of satellitesimals with sizes 300-500 km from distances ∼100RJ. This accretion history may be consistent with a partially differentiated Callisto with a ∼300-km clean ice outer shell overlying a mixed ice and rock-metal interior as suggested by Anderson et al. (2001), which may explain the Ganymede-Callisto dichotomy without resorting to fine-tuning poorly known model parameters. It is also possible that particulate matter coupled to the high specific angular momentum gas flowing through the gap after giant planet gap-opening, capture of heliocentric planetesimals by the extended gas disk, or ablation of planetesimals passing through the disk contributes to the solid content of the disk and lengthens the time scale for Callisto’s formation. Furthermore, this model has Hyperion forming just outside Saturn’s centrifugal radius, captured into resonance by proto-Titan in the presence of a strong gas density gradient as proposed by Lee and Peale (2000). While Titan may have taken significantly longer to form than Ganymede, it still formed fast enough that we would expect it to be fully differentiated. In this sense, it is more like Ganymede than like Callisto (Saturn’s analog of Callisto, we expect, is Iapetus). An alternative starved disk model whose satellite accretion time scale for all the regular satellites is set by the feeding of planetesimals or gas from the planet’s Roche-lobe after gap-opening is likely to imply a long accretion time scale for Titan with small quantities of NH3 present, leading to a partially differentiated (Callisto-like) Titan. The Cassini mission may resolve this issue conclusively. We briefly discuss the retention of elements more volatile than H2O as well as other issues that may help to test our model.  相似文献   
2.
A model of protostar formation under two current carrying gas filaments collision is presented. The model implies MHD approach involving self-gravity and radiative cooling effects. We suppose that through the current carrying gas filament collision a magnetic field reconnection takes place. Using an appropriate self-consistent presentation for time and special dependences of physical quantities in MHD equations, we derive the full set of equations that describes time evolution of the physical quantities just after an occurrence of magnetic field reconnection. Numerical simulations reveal that the process consists of three main phases of evolution. The first is an appearance of preceding peaks in time profiles of density and temperature following by the next phase of depression of both temperature and density and the final fast condensation phase with either cooling or heating of matter depending on initial parameters of problem. Effects of initial conditions like as magnetic field strength, current strength, initial gravity energy, cooling time and a geometry of collision are investigated. Main conclusion is that protostar formation takes place within the time interval less than one free fall time and it is preceded by the appearance of dense and hot matter with lifetime much less than free fall time. The final temperature of the protostar depends on the physical conditions and mainly on the ratio between free fall time and cooling time in the colliding current carrying gas filaments.  相似文献   
3.
The Donghetang Formation (Upper Devonian) in central Tarim Basin has been thought an important oil and gas reservoir since the abundant oil and gas resources were found in the wells W16, W20, W34, and other fields. However, the sedimentary environment of the Donghetang Formation has been disputed because it suffered from both tidal and fluvial actions and there were not rich fossils in the sandstone. After the authors analyzed sedimentary features by means of drill cores, well logging data, paleosols, and with SEM obseruations, three kinds of sedimentary environments were distinguished: alluvial fan, tide-dominated estuary, and shelf. Particularly, the sedimentary features of tide-dominated estuary were studied in detail. Besides, the authors discussed sedimentary characteristics of the Donghetang Formation which was divided into two fourth-order sequences and five system tracts. At the same time, according to the forming process of five system tracts, the whole vertical evolution and lateral transition of tide-dominated estuary were illustrated clearly. Finally, the reservoir quality was evaluated based on porosity and permeability.  相似文献   
4.
The paper deals with the methods of formation pressure evaluation for a single well by using the very common ac-cepted parameters, such as drilling exponent , and flowline temperature , etc. which is part of compiling the end well report.  相似文献   
5.
Considerable debate surrounds the age of the Middle Pleistocene glacial succession in East Anglia following some recent stratigraphical reinterpretations. Resolution of the stratigraphy here is important since it not only concerns the glacial history of the region but also has a bearing on our understanding of the earliest human occupation of north‐western Europe. The orthodox consensus that all the tills were emplaced during the Anglian (Marine Isotope Stage (MIS) 12) has recently been challenged by a view assigning each major till to a different glacial stage, before, during and after MIS 12. Between Trimingham and Sidestrand on the north Norfolk coast, datable organic sediments occur immediately below and above the glacial succession. The oldest glacial deposit (Happisburgh Till) directly overlies the ‘Sidestrand Unio‐bed’, here defined as the Sidestrand Hall Member of the Cromer Forest‐bed Formation. Dating of these sediments therefore has a bearing on the maximum age of the glacial sequence. This paper reviews the palaeobotany and describes the faunal assemblages recovered from the Sidestrand Unio‐bed, which accumulated in a fluvial environment in a fully temperate climate with regional deciduous woodland. There are indications from the ostracods for weakly brackish conditions. Significant differences are apparent between the Sidestrand assemblages and those from West Runton, the type site of the Cromerian Stage. These differences do not result from contrasting facies or taphonomy but reflect warmer palaeotemperatures at Sidestrand and a much younger age. This conclusion is suggested by the higher proportion of thermophiles at Sidestrand and the occurrence of a water vole with unrooted molars (Arvicola) rather than its ancestor Mimomys savini with rooted molars. Amino acid racemisation data also indicate that Sidestrand is significantly younger than West Runton. These data further highlight the stratigraphical complexity of the ‘Cromerian Complex’ and support the conventional view that the Happisburgh Till was emplaced during the Anglian rather than the recently advanced view that it dates from MIS 16. Moreover, new evidence from the Trimingham lake bed (Sidestrand Cliff Formation) above the youngest glacial outwash sediments (Briton's Lane Formation) indicates that they also accumulated during a Middle Pleistocene interglacial – probably MIS 11. All of this evidence is consistent with a short chronology placing the glacial deposits within MIS 12, rather than invoking multiple episodes of glaciation envisaged in the ‘new glacial stratigraphy’ during MIS 16, 12, 10 and 6. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
6.
It is assumed that the two-fold disc-wide symmetry of spirals is caused by density waves, but also the potential of a bar component may have a significant influence on structural properties. The strength of the bar component appears to be anti-correlated with the degree of symmetry of star-forming regions in the spiral arms (Rozas et al., 1998). We present new results of R and Hα surface photometry of a sample of bright barred spirals. A photometric decompositon of the galaxy components is carried out in order to make a more accurate measurement of the strength of the bar and its interrelation to gas and stars in the disc. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
7.
Timing of the Nihewan formation and faunas   总被引:2,自引:0,他引:2  
Magnetostratigraphic dating of the fluvio-lacustrine sequence in the Nihewan Basin, North China, has permitted the precise timing of the basin infilling and associated Nihewan mammalian faunas. The combined evidence of new paleomagnetic findings from the Hongya and Huabaogou sections of the eastern Nihewan Basin and previously published magnetochronological data suggests that the Nihewan Formation records the tectono-sedimentary processes of the Plio-Pleistocene Nihewan Basin and that the Nihewan faunas can be placed between the Matuyama-Brunhes geomagnetic reversal and the onset of the Olduvai subchron (0.78-1.95 Ma). The onset and termination of the basin deposition occurred just prior to the Gauss-Matuyama geomagnetic reversal and during the period from the last interglaciation to the late last glaciation, respectively, suggesting that the Nihewan Formation is of Late Pliocene to late Pleistocene age. The Nihewan faunas, comprising a series of mammalian faunas (such as Maliang, Donggutuo, Xiaochangliang, Banshan, Majuangou, Huabaogou, Xiashagou, Danangou and Dongyaozitou), are suggested to span a time range of about 0.8-2.0 Ma. The combination of our new and previously published magnetostratigraphy has significantly refined the chronology of the terrestrial Nihewan Formation and faunas.  相似文献   
8.
The regionally extensive, coarse-grained Bakhtiyari Formation represents the youngest synorogenic fill in the Zagros foreland basin of Iran. The Bakhtiyari is present throughout the Zagros fold-thrust belt and consists of conglomerate with subordinate sandstone and marl. The formation is up to 3000 m thick and was deposited in foredeep and wedge-top depocenters flanked by fold-thrust structures. Although the Bakhtiyari concordantly overlies Miocene deposits in foreland regions, an angular unconformity above tilted Paleozoic to Miocene rocks is expressed in the hinterland (High Zagros).

The Bakhtiyari Formation has been widely considered to be a regional sheet of Pliocene–Pleistocene conglomerate deposited during and after major late Miocene–Pliocene shortening. It is further believed that rapid fold growth and Bakhtiyari deposition commenced simultaneously across the fold-thrust belt, with limited migration from hinterland (NE) to foreland (SW). Thus, the Bakhtiyari is generally interpreted as an unmistakable time indicator for shortening and surface uplift across the Zagros. However, new structural and stratigraphic data show that the most-proximal Bakhtiyari exposures, in the High Zagros south of Shahr-kord, were deposited during the early Miocene and probably Oligocene. In this locality, a coarse-grained Bakhtiyari succession several hundred meters thick contains gray marl, limestone, and sandstone with diagnostic marine pelecypod, gastropod, coral, and coralline algae fossils. Foraminiferal and palynological species indicate deposition during early Miocene time. However, the lower Miocene marine interval lies in angular unconformity above ~ 150 m of Bakhtiyari conglomerate that, in turn, unconformably caps an Oligocene marine sequence. These relationships attest to syndepositional deformation and suggest that the oldest Bakhtiyari conglomerate could be Oligocene in age.

The new age information constrains the timing of initial foreland-basin development and proximal Bakhtiyari deposition in the Zagros hinterland. These findings reveal that structural evolution of the High Zagros was underway by early Miocene and probably Oligocene time, earlier than commonly envisioned. The age of the Bakhtiyari Formation in the High Zagros contrasts significantly with the Pliocene–Quaternary Bakhtiyari deposits near the modern deformation front, suggesting a long-term (> 20 Myr) advance of deformation toward the foreland.  相似文献   

9.
藏北南羌塘盆地毕洛错地区下侏罗统曲色组石膏岩层   总被引:1,自引:0,他引:1  
对西藏自治区北部南羌塘盆地毕洛错地区下侏罗统曲色组石膏岩层进行了研究。根据岩石地层和生物地层资料,确认毕洛错地区的石膏岩层和油页岩为曲色组的一部分,地质时代为早侏罗世,并确认下侏罗统曲色组在区域上可能是寻找油气、油页岩资源的重要层位之一。  相似文献   
10.
通过对秭归盆地南缘中、上三叠统巴东组和沙镇溪组地层剖面的实测及1∶10万秭归幅地质填图发现,中三叠统巴东组在秭归盆地东南缘存在不同程度的缺失,秭归郭家坝一带,只沉积巴东组一段、二段地层。秭归楠家湾一带,整个巴东组全部缺失,上三叠统沙镇溪组直接覆盖于早三叠世嘉陵江组之上。而秭归盆地西缘沙镇溪、巴东麂子岩一带,巴东组发育齐全。上述现象表明,在早三叠世末期,由于印支运动的影响,巴东组地层出现了较大差异。沙镇溪组在沉积上继承了巴东组高低不平的古地貌特征,沉积厚度变化较大。上三叠统沙镇溪组与中统巴东组之间,在盆地不同的部位可呈现出整合或平行不整合的接触关系,而不存在断层接触关系。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号