首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
地球物理   4篇
地质学   11篇
海洋学   3篇
  2014年   3篇
  2013年   3篇
  2011年   1篇
  2009年   4篇
  2008年   2篇
  2007年   2篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
排序方式: 共有18条查询结果,搜索用时 563 毫秒
1.
By using small scale model tests, the interference effect on the vertical load-deformation behavior of a number of equally spaced strip footings, placed on the surface of dry sand, was investigated. At any stage, all the footings were assumed to (i) carry exactly equal magnitude of load, and (ii) settle to the same extent. No tilt of the footing was permitted. The effect of clear spacing (s) among footings on the results was explored. A new experimental setup was proposed in which only one footing needs to be employed rather than a number of footings. The bearing capacity increases continuously with decrease in spacing among the footings. The interference effect becomes further prominent with increase in soil friction angle. In contrast to an increase in the bearing capacity, with decrease in spacing of footings, an increase in the footing settlement associated with the ultimate state of shear failure was observed. The present experimental observations were similar to those predicted by the available theory, based on the method of characteristics. As compared to the theory, the present experimental data, however, indicates much greater effect of interference especially for larger spacing among footings.  相似文献   
2.
Foundations supporting hammers and presses have to withstand powerful short-period impact loads. When designing these foundations, their vibration amplitudes and the forces transmitted to the supporting piles or soil medium must be reduced to meet serviceability and stability requirements. Mounting systems are often used to achieve this goal. The objectives of this paper are to investigate the efficiency of mounting systems for different foundation configurations and to provide practical guidance for their design. A comprehensive parametric study was conducted and the results were used to establish a set of charts for the design of efficient mounting systems.  相似文献   
3.
Bearing capacity of rock over mined cavities in Nottingham   总被引:1,自引:0,他引:1  
A significant geohazard is created in Nottingham, UK, by hundreds of man-made caves cut in the weak sandstone beneath the city centre. Stability of the caves has been assessed by a single full-scale loading test, by numerical modelling with FLAC and by physical modelling in plaster. For typical caves 4 m wide, bearing capacity of the rock roof rises from 2 MPa where it is 1 m thick to 8 MPa where 3 m thick. Stability decreases over wider caves and where the loading pad edge is over the edge of the cave. Numerical modelling of a very wide cave revealed the failure mechanisms and also showed that an internal support wall increased roof bearing capacity by 50%. Local building regulations that require 3-5 m of rock cover over the sandstone caves appear to be conservative. In stronger rocks, including karstic limestone, a guideline that cover thickness exceeds 70% of the cave width appears to be appropriate.  相似文献   
4.
Static stability mainly against sliding of a typical, relatively large skirted gravity structure was investigated using three-dimensional finite element modeling. The numerical model was validated against centrifuge test results. A specific set of dimensions was chosen to model a typical skirted gravity structure in a centrifuge with two types of foundation soils: uniform saturated sand and a clay zone sandwiched between two sand layers. Soil shear strength parameters used in the finite element models were estimated from in-flight cone penetration resistance measurements obtained in the centrifuge. Numerical parametric studies were conducted using the validated finite element model. The parameters included were the depth and strength of the clay zone and the inclination of external load. It is shown that a relatively simple three-dimensional finite element model was effective in providing information that would be needed to design such a critical and expensive offshore structure. Basic Mohr-Coulomb strength parameters and moduli based on cone penetration resistance measurements and published empirical correlations were appropriate in modeling the soils in the finite element simulations.  相似文献   
5.
A hierarchical finite element is presented for the geometrically nonlinear free and forced vibration of a non-uniform Timoshenko beam resting on a two-parameter foundation. Legendre orthogonal polynomials are used as enriching shape functions to avoid the shear-locking problem. With the enriching degrees of freedom, the accuracy of the computed results and the computational efficiency are greatly improved. The arc-length iterative method is used to solve the nonlinear eigenvalue equation. The computed results of linear and nonlinear vibration analyses show that the convergence of the proposed element is very fast with respect to the number of Legendre orthogonal polynomials used. Since the elastic foundation and the axial load applied at both ends of the beam affect the ratios of linear frequencies associated with the internal resonance, they influence the nonlinear vibration characteristics of the beam. The axial tensile stress of the beam in nonlinear vibration is investigated in this paper, and attention should be paid to the geometrically nonlinear vibration resulting in considerably large axial tensile stress in the beam.  相似文献   
6.
The paper demonstrates that whereas often in seismic geotechnical design it is not realistically feasible to design with ample factor of safety against failure as is done in static design, an “engineering” apparent seismic factor of safety less than 1 does not imply failure. Examples from slope stability and foundation rocking illustrate the concept. It is also shown that in many cases it may be beneficial to under-design the foundation by accepting substantial uplifting and/or full mobilization of bearing capacity failure mechanisms.  相似文献   
7.
The purpose of this study, which concerns the stochastic dynamic stiffness of foundations for large offshore wind turbines, is to quantify uncertainties related to the first natural frequency of a turbine supported by a surface footing and to estimate the low event probabilities. Herein, a simple model of a wind turbine structure with equivalent coupled springs at the base is calibrated with the mean soil property values. A semianalytical solution, based on the Green׳s function for a layered half-space is utilized for estimation of foundation responses. Soil elastic modulus and layer depth are considered as random variables with lognormal distributions. The uncertainties are quantified, and the estimation of rare events of the first natural frequency is discussed through an advanced reliability approach based on subset simulation. This analysis represents a first step in the estimation of the safety with respect to the failure of a turbine in the fatigue limit state.  相似文献   
8.
The average risk of a bridge over water in the USA collapsing from scour during its 75 years design life is estimated at 3.7×10?3. This risk makes scour of foundations the number one cause of bridge collapse and 3 times larger than the next cause of bridge collapse, which is collisions. The current paper presents a site specific method to estimate the probability that a certain scour depth will be exceeded during the life of a bridge. The methodology is limited to some uncertainties associated with the randomness of hydrologic conditions. It does not include uncertainties associated with other input parameters, such as geometry and soil erodibility or uncertainties associated with the scour prediction model. The SRICOS–EFA method is used as the reference method to predict the scour depth. This method requires three inputs: the hydraulic parameters (e.g. velocity hydrograph), the geometry parameters (e.g. pier size) and the soil erodibility parameters (e.g. erosion function). The input is used together with the program to generate the scour depth versus time over the period of interest. The final scour depth is that reached at the end of the specified period. This paper proposes a probabilistic framework to present the final scour depth as a cumulative density function. The cumulative density function of the flow is sampled randomly to give a future hydrograph, which has the same mean and standard deviation as the original hydrograph. For this synthetic hydrograph a final scour depth is obtained by using SRICOS–EFA. Thousands of equally likely hydrographs are generated and the corresponding final scour depths are organized in a distribution. That final scour depth distribution gives the probability that a chosen scour depth will be exceeded.  相似文献   
9.
Abstract

This paper describes the results of laboratory tests carried out on model pile shafts in a variety of reconstituted calcareous sands and on silica sand. The factors influencing both the skin friction under static loading and the degradation of skin friction under cyclic loading have been investigated. The grading and crushability of the particles appears to have a significant influence on both, with less favourable performance being found for uniformly graded crushable particles. Relative density and overconsolidation ratio also have some influence.

Under cyclic loading, the amplitude of cyclic displacement and, more specifically, the cyclic slip displacement, influence the extent of cyclic degradation of skin friction.  相似文献   
10.
The ultimate uplift resistance of a group of multiple strip anchors placed in sand and subjected to equal magnitudes of vertical upward pullout loads has been determined by means of model experiments. Instead of using a number of anchor plates in the experiments, a single anchor plate was used by simulating the boundary conditions along the planes of symmetry on both the sides of the anchor plate. The effect of clear spacing (s) between the anchors, for different combinations of embedment ratio (λ) of anchors and friction angle (ϕ) of soil mass, was examined in detail. The results were presented in terms of a non-dimensional efficiency factor (ξγ), which was defined as the ratio of the failure load for an intervening strip anchor of a given width (B) to that of a single strip anchor plate having the same width. It was clearly noted that the magnitude of ξγ reduces quite extensively with a decrease in the spacing between the anchors. The magnitude of ξγ for a given s/B was found to vary only marginally with respect to changes in λ and ϕ. The experimental results presented in this study compare reasonably well with the theoretical and experimental data available in literature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号