首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5895篇
  免费   1723篇
  国内免费   2451篇
测绘学   47篇
大气科学   160篇
地球物理   1255篇
地质学   7852篇
海洋学   321篇
天文学   55篇
综合类   236篇
自然地理   143篇
  2024年   55篇
  2023年   164篇
  2022年   273篇
  2021年   346篇
  2020年   323篇
  2019年   481篇
  2018年   445篇
  2017年   409篇
  2016年   477篇
  2015年   472篇
  2014年   503篇
  2013年   505篇
  2012年   469篇
  2011年   563篇
  2010年   453篇
  2009年   518篇
  2008年   408篇
  2007年   489篇
  2006年   395篇
  2005年   300篇
  2004年   274篇
  2003年   270篇
  2002年   195篇
  2001年   151篇
  2000年   149篇
  1999年   162篇
  1998年   101篇
  1997年   128篇
  1996年   114篇
  1995年   118篇
  1994年   90篇
  1993年   61篇
  1992年   63篇
  1991年   51篇
  1990年   35篇
  1989年   22篇
  1988年   17篇
  1987年   3篇
  1986年   3篇
  1985年   2篇
  1984年   4篇
  1983年   2篇
  1982年   1篇
  1981年   4篇
  1978年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
A FORTRAN program, consistent with the commercially available finite element (FE) code ABAQUS, is developed based on a three-dimensional (3D) linear elastic brittle damage constitutive model with two damage criteria. To consider the heterogeneity of rock, the developed FORTRAN program is used to set the stiffness and strength properties of each element of the FE model following a Weibull distribution function. The reliability of the program is assessed against available experimental results for granite cylindrical specimens with a throughgoing, flat and inclined fissure. The calibration procedure of the material parameters is explained in detail, and it is shown that the compressive to tensile strength ratio can have a substantial influence on the failure response of the specimens. Numerical simulations are conducted for models with different levels of heterogeneity. The results show a smaller load bearing capacity for models with less homogeneity, representing gradual coalescence of fully damaged elements forming throughout the models during loading. The maximum load bearing capacity is studied for various combinations of inclination angles of two centrally aligned, throughgoing and flat fissures of equal length embedded in cylindrical models under uniaxial and multiaxial loading conditions. The key role of the compressive to tensile strength ratio is highlighted by repeating certain simulations with a lower compressive to tensile strength ratio. It is proven that the peak loads of the rock models with sufficiently small compressive to tensile strength ratios containing two throughgoing fissures of equal length are similar, provided that the minimum inclination angles of the models are the same. The results are presented and discussed with respect to the existing experimental findings in the literature, suggesting that the numerical model applied in this study can provide useful insight into the failure behaviour of rock-like materials.  相似文献   
2.
This paper studies dynamic crack propagation by employing the distinct lattice spring model (DLSM) and 3‐dimensional (3D) printing technique. A damage‐plasticity model was developed and implemented in a 2D DLSM. Applicability of the damage‐plasticity DLSM was verified against analytical elastic solutions and experimental results for crack propagation. As a physical analogy, dynamic fracturing tests were conducted on 3D printed specimens using the split Hopkinson pressure bar. The dynamic stress intensity factors were recorded, and crack paths were captured by a high‐speed camera. A parametric study was conducted to find the influences of the parameters on cracking behaviors, including initial and peak fracture toughness, crack speed, and crack patterns. Finally, selection of parameters for the damage‐plasticity model was determined through the comparison of numerical predictions and the experimentally observed cracking features.  相似文献   
3.
The aim of this paper is to formulate a micromechanics‐based approach to non‐aging viscoelastic behavior of materials with randomly distributed micro‐fractures. Unlike cracks, fractures are discontinuities that are able to transfer stresses and can therefore be regarded from a mechanical viewpoint as interfaces endowed with a specific behavior under normal and shear loading. Making use of the elastic‐viscoelastic correspondence principle together with a Mori‐Tanka homogenization scheme, the effective viscoelastic behavior is assessed from properties of the material constituents and damage parameters related to density and size of fractures. It is notably shown that the homogenized behavior thus formulated can be described in most cases by means of a generalized Maxwell rheological model. For practical implementation in structural analyses, an approximate model for the isotropic homogenized fractured medium is formulated within the class of Burger models. Although the approximation is basically developed for short‐term and long‐term behaviors, numerical applications indicate that the approximate Burger model accurately reproduce the homogenized viscoelastic behavior also in the transient conditions.  相似文献   
4.
We model the subnebulae of Jupiter and Saturn wherein satellite accretion took place. We expect each giant planet subnebula to be composed of an optically thick (given gaseous opacity) inner region inside of the planet’s centrifugal radius (where the specific angular momentum of the collapsing giant planet gaseous envelope achieves centrifugal balance, located at rCJ ∼ 15RJ for Jupiter and rCS ∼ 22RS for Saturn) and an optically thin, extended outer disk out to a fraction of the planet’s Roche-lobe (RH), which we choose to be ∼RH/5 (located at ∼150 RJ near the inner irregular satellites for Jupiter, and ∼200RS near Phoebe for Saturn). This places Titan and Ganymede in the inner disk, Callisto and Iapetus in the outer disk, and Hyperion in the transition region. The inner disk is the leftover of the gas accreted by the protoplanet. The outer disk may result from the nebula gas flowing into the protoplanet during the time of giant planet gap-opening (or cessation of gas accretion). For the sake of specificity, we use a solar composition “minimum mass” model to constrain the gas densities of the inner and outer disks of Jupiter and Saturn (and also Uranus). Our model has Ganymede at a subnebula temperature of ∼250 K and Titan at ∼100 K. The outer disks of Jupiter and Saturn have constant temperatures of 130 and 90 K, respectively.Our model has Callisto forming in a time scale ∼106 years, Iapetus in 106-107 years, Ganymede in 103-104 years, and Titan in 104-105 years. Callisto takes much longer to form than Ganymede because it draws materials from the extended, low density portion of the disk; its accretion time scale is set by the inward drift times of satellitesimals with sizes 300-500 km from distances ∼100RJ. This accretion history may be consistent with a partially differentiated Callisto with a ∼300-km clean ice outer shell overlying a mixed ice and rock-metal interior as suggested by Anderson et al. (2001), which may explain the Ganymede-Callisto dichotomy without resorting to fine-tuning poorly known model parameters. It is also possible that particulate matter coupled to the high specific angular momentum gas flowing through the gap after giant planet gap-opening, capture of heliocentric planetesimals by the extended gas disk, or ablation of planetesimals passing through the disk contributes to the solid content of the disk and lengthens the time scale for Callisto’s formation. Furthermore, this model has Hyperion forming just outside Saturn’s centrifugal radius, captured into resonance by proto-Titan in the presence of a strong gas density gradient as proposed by Lee and Peale (2000). While Titan may have taken significantly longer to form than Ganymede, it still formed fast enough that we would expect it to be fully differentiated. In this sense, it is more like Ganymede than like Callisto (Saturn’s analog of Callisto, we expect, is Iapetus). An alternative starved disk model whose satellite accretion time scale for all the regular satellites is set by the feeding of planetesimals or gas from the planet’s Roche-lobe after gap-opening is likely to imply a long accretion time scale for Titan with small quantities of NH3 present, leading to a partially differentiated (Callisto-like) Titan. The Cassini mission may resolve this issue conclusively. We briefly discuss the retention of elements more volatile than H2O as well as other issues that may help to test our model.  相似文献   
5.
This paper briefly reviews the formulations used over the last 40 years for the solution of problems involving tensile cracking, with both the discrete and the smeared crack approaches. The paper focuses on the smeared approach, identifying as its main drawbacks the observed mesh‐size and mesh‐bias spurious dependence when the method is applied ‘straightly’. A simple isotropic local damage constitutive model is considered, and the (exponential) softening modulus is regularized according to the material fracture energy and the element size. The continuum and discrete mechanical problems corresponding to both the weak discontinuity (smeared cracks) and the strong discontinuity (discrete cracks) approaches are analysed and the question of propagation of the strain localization band (crack) is identified as the main difficulty to be overcome in the numerical procedure. A tracking technique is used to ensure stability of the solution, attaining the necessary convergence properties of the corresponding discrete finite element formulation. Numerical examples show that the formulation derived is stable and remarkably robust. As a consequence, the results obtained do not suffer from spurious mesh‐size or mesh‐bias dependence, comparing very favourably with those obtained with other fracture and continuum mechanics approaches. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
6.
A new technique designed to help quantify the degree of damage to the landscape from one area to another shows a close relationship between population density and the degree of landscape damage. The technique establishes a scale of damage from 0 to 5 (zero = no damage; 5 = severe damage) using data from aerial photographs, land-use maps, and field data. The related formula allows one to compare the relative degree of damage across regions using a combination of an absolute index, a theoretical index, a relative index, and population density. Xing'an County is used to demonstrate the technique.  相似文献   
7.
A method of structural damage identification using harmonic excitation force is presented. It considers the effects of both measurement and modelling errors in the baseline finite element model. Damage that accompanies changes in structural parameters can be estimated for a damaged structure from the change between measured vibration responses and ones calculated from the analytical model of the intact structure. In practice, modelling errors exist in the analytical model due to material and geometric uncertainties and a reduction in the degrees of freedom as well as measurement errors, making identification difficult. To surmount these problems, bootstrap hypothesis testing, which enables statistical judgment without information about these errors, was introduced. The method was validated by numerical simulation using a three‐dimensional frame structure and real vibration data for a three‐storey steel frame structure. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
8.
本文讨论了河西走廊东部地区早二叠世地层研究的有关问题,认为甘肃山丹青羊泉下二叠统剖面是北祁连山—河西走廊地区的重要代表剖面之一。以该剖面研究为依据,提出走廊东部地区下二叠统的进一步划分方案,分析该区早二叠世地层岩性特征差异的原因,并与走廊西部地区同期地层进行对比,进一步明确了大黄沟组的含意。  相似文献   
9.
A model of protostar formation under two current carrying gas filaments collision is presented. The model implies MHD approach involving self-gravity and radiative cooling effects. We suppose that through the current carrying gas filament collision a magnetic field reconnection takes place. Using an appropriate self-consistent presentation for time and special dependences of physical quantities in MHD equations, we derive the full set of equations that describes time evolution of the physical quantities just after an occurrence of magnetic field reconnection. Numerical simulations reveal that the process consists of three main phases of evolution. The first is an appearance of preceding peaks in time profiles of density and temperature following by the next phase of depression of both temperature and density and the final fast condensation phase with either cooling or heating of matter depending on initial parameters of problem. Effects of initial conditions like as magnetic field strength, current strength, initial gravity energy, cooling time and a geometry of collision are investigated. Main conclusion is that protostar formation takes place within the time interval less than one free fall time and it is preceded by the appearance of dense and hot matter with lifetime much less than free fall time. The final temperature of the protostar depends on the physical conditions and mainly on the ratio between free fall time and cooling time in the colliding current carrying gas filaments.  相似文献   
10.
In recent years,scholars at home and abroad have method,and that vanous disasters would be analyzed assynthetically studied natural dlsaste‘theoretically and an Integral.SHI Peilun(1991)putforwad a scientificmethodologlcally,as well as its cases analys。s(CND,term—regional disaster system,which Indicates that1987; MA et al,1990; MARBLE,1990; NE et al,the situation of a disaster(calamity loss)results from1999; PATAK et al,1982; SHI,1991;VAN et al,h…  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号