首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
地质学   4篇
  2021年   1篇
  2017年   1篇
  2009年   1篇
  2008年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
A large, euhedral crystal of fluorapatite (ca. 19.5 × 20.0 mm) from the Panasqueira tin-tungsten deposit (Portugal) was investigated in terms of the distribution of trace elements by using several microanalytical techniques. The studied material represents almost pure fluorapatite with minor amounts of other cations (mainly Sr, Mn, REE and Fe), OH and Cl. Particular interest was given to the distribution of rare earth elements with respect to the crystallographic orientation. A broad range of analytical techniques were used, including optical microscopy coupled with cathodoluminescence imaging, electron probe microanalysis (EPMA), laser ablation – inductively coupled plasma mass spectrometry (LA-ICPMS), Raman microspectroscopy, and simultaneous thermal analysis coupled with mass spectrometry. The investigated crystal consists of the main crystal with a distinct core and rim (Ap2core and Ap2rim, respectively), which grew on a previous, euhedral crystal (Ap1). The fluorapatite demonstrates various types of zoning: regular oscillatory, irregular, and internal sectoring, which is also reflected in trace elements concentrations. The rim Ap2rim has lower concentrations of Mn, Sr and Fe, and significantly higher concentrations of REE compared to the core Ap2core and older crystal Ap1. Furthermore, the rim Ap2rim is strongly depleted in Th, U and Pb. The entire crystal shows elevated Eu contents, expressed as a strong positive anomaly in chondrite-normalized REE patterns. With regards to the volatiles, F concentrations are constant in Ap1, Ap2core and Ap2rim, whereas Cl is below the EPMA detection limit. The Ap2rim was the only part of the investigated material containing OH and CO3, which were observed in the Raman spectra. Furthermore, part of the crystal Ap2core is extensively altered, likely due to fluid-induced metasomatic processes. LA-ICPMS U-Pb dating yielded highly discordant dates due to common Pb content. A lower intercept age of 297 ± 13 Ma (MSWD = 0.13) indicates the age of the fluorapatite crystallization. The overall analytical data constrain growth and post-growth processes, including crystallization of Ap1 and Ap2core, which both have typical hydrothermal Sn-W deposit characteristics, whereas Ap2rim is related to a carbonate stage of the mineralization in the Panasqueira deposit.  相似文献   
2.
Dissolution of the synthetic hydroxylapatite (HAP) and fluorapatite (FAP) in pure water was studied at 25 °C and 45 °C in a series of batch experiments. The XRD, FT-IR and SEM analyses indicated that the synthetic, microcrystalline HAP and FAP with apatite structure used in the experiments were found to have no obvious variation after dissolution except that the existence of OH groups in FT-IR spectra for FAP after 2880 h dissolution was observed. During the HAP dissolution (0–4320 h), the aqueous calcium and phosphate concentrations reached the maxima after 120 h and then decreased slowly with time. For the FAP dissolution in pure water, after a transient time of 1440 h (< 60 d), element concentrations and pH became constant suggesting attainment of a steady-state between the solution and solid. During early stages of the FAP dissolution reaction (< 72–120 h), mineral components were released in non-stoichiometric ratios with reacted solution ratios of dissolved Ca:P, Ca:F and P:F being lower than mineral stoichiometric ratios of Ca5(PO4)3F, i.e., 1.67, 5.0 and 3.0, respectively. This indicated that F were preferentially released compared to Ca from the mineral structure. The mean Ksp values were calculated by using PHREEQC for HAP of 10− 53.28 (10− 53.02–10− 53.51) and for FAP of 10− 55.71 (10− 55.18–10− 56.13) at 25 °C, the free energies of formation ΔGfo[HAP] and ΔGfo[FAP] were calculated to be − 6282.82 kJ/mol and − 6415.87 kJ/mol, respectively.  相似文献   
3.
The Bhukia gold (+copper) deposit hosted by albitite and carbonates that occur within the Paleoproterozoic Aravalli-Delhi Fold Belt (ADFB) in western India consists of magnetite, graphite, apatite and tourmaline along with sulfide mineralization. Ubiquitous presence of magnetite and apatite in gold-sulfide association, alteration patterns and shear controlled mineralization suggest it to be IOCG (Iron-oxide copper gold) type deposits. The detailed mineral chemistry of magnetite and apatite are generated and interpreted in terms of their genetic significance, hydrothermal and magmatic origin vis-à-vis their affiliation with IOCG deposition. The data suggest that the magnetite has hydrothermal affiliation. The Ni/Cr ratio is greater than 1, which is explained by differences in solubility and mobility of Ni and Cr in hydrothermal fluids and is corroborated with other key evidences including that of wide ranging Mg concentration further supports a strong hydrothermal input that is envisaged for the deposition of magnetite. Concentration of vanadium in magnetite is generally <1000 ppm in case of barren hydrothermal occurrences while in the study area, it is relatively higher as it is attributed to the gold-sulfide-Cu mineralization. Ti vs Ni/Cr, Ni/(Cr+Mn) vs Ti+V, Ca+Al+Mn vs Ti+V and Al+Mn vs Ti+V variations are interpreted in terms of magnetite genesis. EPMA data suggests that apatite present in Bhukia is of fluorapatite variety with F content >1 wt% and F/Cl >1. Higher concentration of F and moderate Mn along with lower concentration of Cl attests their magmatic hydrothermal character and its derivation from meta-volcano sedimentary source. REE patterns obtained from LA-ICP-MS analysis suggest enrichment of LREE relative to MREE and HREE with negative Eu anomaly. Y/∑REE, La/Sm, Ce/Th and Eu/Eu1 vs Ce/Ce1 values of apatite is indicative of their origin in a highly oxidized environment. Presence of magnetite along with apatite is a common feature in IOCG-IOA (Iron-Oxide Apatite) association. Bhukia Gold Deposit has many similarities with Kiruna type Iron-Oxide Apatite (IOA) deposits particularly with respect to their similar tectonic setting, alteration patterns, mineral assemblages such as abundance of magnetite, apatite and presence of late stage sulfides based on EPMA and Laser ablation ICP-MS (LA-ICP-MS) studies. Lithological, petro-mineralogical and geochemical signatures of magnetite and apatite infer that the Bhukia is a possible IOCG-IOA type gold deposit typically associated with sulfides and graphite which may be used as petrogenetic indicators and pathfinders for exploration.  相似文献   
4.
织金新华磷矿碎屑磷灰石的矿物成分研究   总被引:1,自引:0,他引:1  
织金新华磷矿是我国扬子地台西南缘早寒武世重要的海相沉积磷矿床.长期以来,织金磷块岩磷酸盐矿物成分被认为是碳氟磷灰石或低碳氟磷灰石,有学者认为,产于沉积岩中的磷灰石基本上都属于碳氟磷灰石.本文利用电子探针的微区成分定量分析技术和x射线衍射分析技术,确认织金磷矿碎屑磷灰石为氟磷灰石.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号