首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   7篇
  国内免费   4篇
地球物理   19篇
地质学   20篇
海洋学   8篇
天文学   1篇
综合类   1篇
自然地理   1篇
  2022年   1篇
  2020年   3篇
  2018年   4篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2009年   4篇
  2008年   2篇
  2007年   8篇
  2006年   1篇
  2005年   6篇
  2004年   2篇
  2003年   3篇
  1999年   2篇
排序方式: 共有50条查询结果,搜索用时 15 毫秒
1.
A numerical procedure is described for predicting the motion and structural responses of tension leg platforms (TLPs) in waves. The developed numerical approach, in a TLP is assumed to be flexible instead of rigid, is based on a combination of the three dimensional source distribution method and the finite-element method. The hydrodynamic interactions among TLP members, such as columns and pontoons, are included in the motion and structural response analysis. Numerical results are compared with the experimental and numerical ones. The results of comparison confirmed the validity of the proposed approach.  相似文献   
2.
While limiting-equilibrium Mononobe–Okabe type solutions are still widely used in designing rigid gravity and flexible cantilever retaining walls against earthquakes, elasticity-based solutions have been given a new impetus following the analytical work of Veletsos and Younan [23]. The present paper develops a more general finite-element method of solution, the results of which are shown to be in agreement with the available analytical results for the distribution of dynamic earth pressures on rigid and flexible walls. The method is then employed to further investigate parametrically the effects of flexural wall rigidity and the rocking base compliance. Both homogeneous and inhomogeneous retained soil is considered, while a second soil layer is introduced as the foundation of the retaining system. The results confirm the approximate convergence between Mononobe–Okabe and elasticity-based solutions for structurally or rotationally flexible walls. At the same time they show the beneficial effect of soil inhomogeneity and that wave propagation in the underlying foundation layer may have an effect that cannot be simply accounted for with an appropriate rocking spring at the base.  相似文献   
3.
《地学前缘(英文版)》2018,9(6):1657-1664
A long slope consisting of spatially random soils is a common geographical feature. This paper examined the necessity of three-dimensional(3 D) analysis when dealing with slope with full randomness in soil properties. Although 3 D random finite element analysis can well reflect the spatial variability of soil properties, it is often time-consuming for probabilistic stability analysis. For this reason, we also examined the least advantageous(or most pessimistic) cross-section of the studied slope. The concept of"most pessimistic" refers to the minimal cross-sectional average of undrained shear strength. The selection of the most pessimistic section is achievable by simulating the undrained shear strength as a 3 D random field. Random finite element analysis results suggest that two-dimensional(2 D) plane strain analysis based the most pessimistic cross-section generally provides a more conservative result than the corresponding full 3 D analysis. The level of conservativeness is around 15% on average. This result may have engineering implications for slope design where computationally tractable 2 D analyses based on the procedure proposed in this study could ensure conservative results.  相似文献   
4.
A non-linear three-dimensional unstructured grid model of the M2 tide in the shelf edge area off the west coast of Scotland is used to examine the spatial distribution of the M2 internal tide and its higher harmonics in the region. In addition, the spatial variability of the tidally induced turbulent kinetic energy and associated mixing in the area are considered. Initial calculations involve only tidal forcing, although subsequent calculations are performed with up-welling and down-welling favourable winds to examine how these influence the tidal distribution (particularly the higher harmonics) and mixing in the region. Both short- and long-duration winds are used in these calculations. Tidal calculations show that there is significant small-scale spatial variability particularly in the higher harmonics of the internal tide in the region. In addition, turbulence energy and mixing exhibit appreciable spatial variability in regions of rapidly changing topography, with increased mixing occurring above seamounts. Wind effects significantly change the distribution of the M2 internal tide and its higher harmonics, with appreciable differences found between up- and down-welling winds and long- and short-duration winds because of differences in mixing and the presence of wind-induced flows. The implications for model validation, particularly in terms of energy transfer to higher harmonics, and mixing are briefly discussed.  相似文献   
5.
通过滑面应力状态评价滑坡稳定性   总被引:2,自引:0,他引:2  
以黄河上游某大型滑坡为例,研究了有限元法在评价滑坡稳定性中的应用。具体操作过程是:建立滑坡的有限元模型,求出滑面上的应力状态,计算滑面上总的抗滑力与总的滑动力之比,最后评价滑坡的稳定性。通过对黄河上游某大型滑坡比较研究发现,采用有限元法比传递系数法得出的稳定性系数高0.07,这种差异属允许差异范围。采用有限元法计算该滑坡在天然与地震两种条件下的稳定性系数分别为1.14和1.1,可以认为滑坡在两种条件下的稳定性较好。该方法原理正确、操作简单、结果可信度高,有一定的适用价值。  相似文献   
6.
中卫活动断裂带地震破裂危险区演化特征模拟   总被引:2,自引:0,他引:2  
通过建立的岩石破裂危险度KR及断层滑动危险系数KF2个判别指标,对中卫一同心活动断裂带进行粘弹性有限元数值模拟,得到该断裂带在现代构造应力场作用下大震后的应力演变及地震破裂危险区长度、范围、峰值、衰减规律等的演化特征。结果表明,该断裂带大震后应力场的调整主要产生于震后300~400年间,震后地震破裂危险区转移到断裂带的中西段,并逐渐向东迁移,范围越来越集中,最终转移到断裂带的弧形顶点部位(红谷梁附近)。  相似文献   
7.
青藏高原东缘的地壳结构是两种主流青藏高原隆升模式争辩的焦点之一.中下地壳流曾经被认为是高原东缘隆升的主要构造驱动力,但是中上地壳之间低阻低速层的发现及其与2008 MS8.0汶川地震良好的对应关系表明,高原东缘具有向东刚性挤出的可能性.然而大部分关于龙门山断裂的数值模拟仍建立在下地壳流的基础上,仅将低阻低速层作为断裂的延续或是弱化地壳物性参数的软弱层,而非能够控制块体滑动的"解耦层",也没有考虑到刚性块体变形中的断裂相互作用.本文建立了包含相互平行的龙门山断裂与龙日坝断裂的刚性上地壳模型,用极薄的低阻低速层作为块体滑动的解耦带,采用速率相关的非线性摩擦接触有限元方法,基于R最小策略控制时间步长,计算了在仅有侧向挤压力作用下,低阻低速层对青藏高原东缘的刚性块体变形和断裂活动的作用.计算结果显示,低阻低速层控制了刚性块体的垂直变形和水平变形分布特征.在侧向挤压力的持续作用下,在低阻低速层控制下的巴颜喀拉块体能够快速隆升,而缺乏低阻低速层的四川盆地隆升速度和隆升量均极小,隆升差异集中在龙门山断裂附近,使其发生应力积累乃至破裂.龙日坝断裂被两侧的刚性次级块体挟持着一起向南东方向运动,但该断裂的走滑运动分解了绝大部分施加在块体边界上的走滑量,使得相邻的龙门山次级块体的走滑分量遽然减少,也使得龙门山断裂表现出以逆冲为主,兼有少量走滑的运动性质.本文所得的这些计算结果显示了在缺乏中下地壳流,仅在低阻低速层解耦下刚性块体隆升过程及相关断裂活动,提供了青藏高原东缘刚性块体挤出的可行性,为青藏高原东缘隆升机制的研究讨论提供了重要依据.  相似文献   
8.
At present, methods based on allowable displacements are frequently used in the seismic design of earth retaining structures. However, these procedures ignore both the foundation soil deformability and the seismic amplification of the soil placed behind the retaining wall. Thus, they are not able to predict neither a rotational failure mechanism nor seismic induced lateral displacements with an acceptable degree of accuracy for the most general case. In this paper, a series of 2D finite-element analyses were carried out to study the seismic behavior of gravity retaining walls on normally consolidated granular soils. Chilean strong-motion records were applied at the bedrock level. An advanced non-linear constitutive model was used to represent both the backfill and foundation soil behavior. This elastoplastic model takes into account both the stress dependency of soil stiffness and coupling between shear and volumetric strains. In unloading–reloading cycles, the non-linear shear-modulus reduction with shear strain amplitude is considered. Interface elements were used to model soil–structure interaction. Routine-design charts were derived from the numerical analyses to predict the lateral movements at the base and top of gravity retaining walls located at sites with similar seismic characteristics to the Chilean subduction zone. Thus, wall seismic rotation can also be obtained. The developed charts consider wall dimensions, granular soil properties, bedrock depth, and seismic input motion characteristics. As shown, the proposed charts match well with available experimental data.  相似文献   
9.
The buckling behaviour of the 360 × 152 steel H-piles supporting the integral abutments of the Scotch Road Bridge, located in Trenton, New Jersey, has been studied for the cases of single pile and pile bent. Three-dimensional finite-element models for single pile and pile bent have been developed to study the behaviour of these fully embedded piles under axial and lateral loading. An iterative analysis based on extracting the eigenvalues and eigenvectors (mode shapes) that correspond to the pile(s) critical buckling loads has been adopted. The pile(s) and the surrounding sand were modelled using solid continuum elements in the finite-element model. Material non-linearity is accounted for in both the piles and the soil in the base state of the model. A parametric study has been utilized to determine the effect of the geometric and material properties of the pile and the surrounding sand on the predicted critical buckling loads of the piles. The effects of four parameters have been studied: soil stiffness, pile length, type of connection, and combining vertical and lateral loads. The results from the parametric study showed that the variation of the percentage change in the sand stiffness, pile length, and combining vertical and lateral loads with the critical buckling loads of the 360 × 152 H-piles is nonlinear. Furthermore, the parameters studied are more influential in affecting the critical buckling load of a single pile than a pile bent, with the exception of the ‘type of connection’ parameter.  相似文献   
10.
Geoscientists are faced with a number of complexities that represent obstacles to the development of realistic simulation of deep earth processes. Realistic 4D thermo-mechanical simulation using software packages like Underworld and Gale, when combined appropriately with geoscientific expertise, can lead to novel insights into the deformation of geological structures at a wide range of time and spatial scales. The challenge for end-user geoscientists lies in applying their knowledge within the framework of the software’s input specification, including initial, internal, and boundary conditions and output visualization parameters. We have built a Graphical User Interface (GUI) to remove many of the difficulties related to editing the Extensible Markup Language (XML) encoded input files of Underworld/Gale geomodels and therefore, to greatly broaden the user base of these software packages. By helping Underworld/Gale to meet a large audience, we provide a tool to the geoscience community that helps to move from untested conceptual models to physically valid, properly scaled modelling. Furthermore, the UnderworldGUI offers a mechanism for storing and retrieving experimental models in a centralised database, thus providing the geoscience community with a means to share the outcomes of its experimental research. Further details of the UnderworldGUI are available at the web site .
Shea GoyetteEmail:
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号