首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
地球物理   1篇
地质学   5篇
自然地理   1篇
  2020年   1篇
  2013年   1篇
  2007年   2篇
  2004年   1篇
  1996年   1篇
  1993年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
 The Middle Jurassic Kirkpatrick flood basalts and comagmatic Ferrar intrusions in the Transantarctic Mountains represent a major pulse of tholeiitic magmatism related to early stages in the breakup of Gondwana. A record of the volcano-tectonic events leading to formation of this continental flood-basalt province is provided by strata underlying and only slightly predating the Kirkpatrick lavas. In the central Transantarctic Mountains, the lavas rest on widespread (≥7500 km2) tholeiitic pyroclastic deposits of the Prebble Formation. The Prebble Formation is dominated by lahar deposits and is an unusual example of a regionally developed basaltic lahar field. Related, partly fault-controlled pyroclastic intrusions cut underlying strata, and vents are represented by the preserved flanks of two small tephra cones associated with a volcanic neck. Lahar and air-fall deposits typically contain 50–60% accidental lithic fragments and sand grains derived from underlying Triassic – Lower Jurassic strata in the upper part of the Beacon Supergroup. Juvenile basaltic ash and fine lapilli consist of nonvesicular to scoriaceous tachylite, sideromelane, and palagonite, and have characteristics indicating derivation from hydrovolcanic eruptions. The abundance of accidental debris from underlying Beacon strata points to explosive phreatomagmatic interaction of basaltic magma with wet sediment and groundwater, which appears to have occurred in particular where rising magma intersected upper Beacon sand aquifers. Composite clasts in the lahar deposits exhibit complex peperitic textures formed during fine-scale intermixing of basaltic magma with wet sand and record steps in subsurface fuel-coolant interactions leading to explosive eruption. The widespread, sustained phreatomagmatic activity is inferred to have occurred in a groundwater-rich topographic basin linked to an evolving Jurassic rift zone in the Transantarctic Mountains. Coeval basaltic phreatomagmatic deposits of the Mawson and Exposure Hill Formations, which underlie exposures of the Kirkpatrick Basalt up to 1500 km to the north along strike in Victoria Land, appear to represent other parts of a regional, extension-related Middle Jurassic phreatomagmatic province which developed immediately prior to rapid outpouring of the flood basalts. This is consistent with models which assign an important role to lithospheric stretching in the generation of flood-basalt provinces. Received: 28 August 1995 / Accepted: 18 April 1996  相似文献   
2.
The Jurassic Ferrar dolerite sills of the McMurdo Dry Valleys,Antarctica represent the plumbing system for flood basalt eruptionsassociated with the breakup of Gondwana. Among the Ferrar sills,the 350–450 m thick cumulate-textured Basement Sill isdifferentiated into a Lower Marginal Zone (LMZ) gabbronorite,a thick Lower Zone (LZ) orthopyroxene–plagioclase orthocumulatepyroxenite, a strongly layered mela- to leuco-gabbronorite MiddleZone (MZ), a thick Upper Zone (UZ) gabbronorite with ferrogabbroicpods, and an Upper Marginal Zone (UMZ) gabbronorite. Texturesand mineral compositions in the LZ pyroxenite and MZ–UZgabbronorites are nearly identical, the main distinction beingthe greater relative proportion of plagioclase in the MZ–UZgabbronorites, and of pigeonite in the UZ. Most orthopyroxenein the LZ, MZ and UZ occurs as sub-euhedral, normally zonedprimocrysts, commonly with rounded plagioclase inclusions. Plagioclaseis usually sub-euhedral and normally zoned, but can containsodic cores interpreted to be xenocrystic. Orthopyroxene andfeldspar compositions thoughout the sill are generally fairlyuniform, and resemble the compositions of micro-phenocrystsin the chilled margins. We infer that the sill was filled bya c. 1250°C slurry of orthopyroxene + plagioclase phenocrystsor primocrysts that subsequently unmixed in response to buoyancyforces. The LZ websterite contains numerous anorthosite to gabbronoriteschlieren, veins and pipes (< 2 m diameter), which we interpretas fossil segregation channels. Textures and mineral compositionsin these felsic channels are very similar both to UZ and MZgabbronorites, and to the groundmass separating accumulatedorthopyroxene primocrysts in the LZ and MZ. We infer that plagioclase-charged,hydrous pore melt from the pyroxenite may have segregated, pooledand ascended through these conduits to feed growth of the UZgabbronorite. Detailed mapping shows that the pipes are separatedby about 15 m on average. Calculations suggest that this numberdensity of conduits could have drained the LZ cumulates of theirinterstitial melt + plagioclase in about 8 days. Sequences (eachc. 5–10 m thick) of layered leuco-gabbronorite in theMZ could represent intra-cumulate sills that formed from plagioclase-richslurries ascending in segregation channels. Fe–Ti-richpyroxenitic veins and pods (some pegmatitic) and an unusualcoarse-grained plagioclase facies occur at the contacts betweenmassive leuco-gabbronorite layers in the MZ. Discordant ferro-pegmatitepods and dykes occur throughout the UZ. We interpret these Fe-richpegmatoidal rocks as evolved residual melts expelled from thecompacting gabbronoritic cumulates of the MZ and UZ. KEY WORDS: Ferrar; cumulates; differentiation; Antarctica; layering  相似文献   
3.
4.
Tholeiitic rocks of the Ferrar Large Igneous Province (FLIP) occur in a linear belt from the Theron Mountains to Horn Bluff in the Transantarctic Mountains and extend into southeastern Australasia. The FLIP was emplaced during the initial stages of Gondwana break-up from a source suggested to be in the proto-Weddell Sea region. Magma transport from its source (Weddell triple junction) was controlled by an Early Jurassic zone of extension. The FLIP comprises the Dufek intrusion, Ferrar Dolerite sills and dykes (sheet intrusions), and extrusive rocks consisting of pyroclastic strata overlain by Kirkpatrick Basalt lavas. The Dufek intrusion occurs in deformed supracrustal rocks of the foldbelt along the paleo-Pacific Gondwana margin. A few sills were emplaced in basement rocks, but the majority of the sheet intrusions occur in flat-lying Devonian to Triassic Beacon strata. Only in the central Transantarctic Mountains (CTM) and south and north Victoria Land (SVL, NVL) are extrusive rocks preserved overlying Beacon strata. The greatest cumulative thicknesses of magmatic rocks (ca. 2 km) occur in areas where lavas are preserved (CTM and SVL). Sheet intrusions have complex relationships. Dyke swarms (sensu stricto) are unknown and dykes cutting basement rocks are uncommon. Nevertheless, these dykes, including a 30-m-wide dyke in SVL, suggest that some magmas locally migrated up through basement rocks. In CTM and NVL the outcrop belt has a width of about 160 km. Sills originally extended farther toward the plate margin but have been cut out by erosion and Cenozoic faulting, most clearly in CTM; geophysical data suggest extension under the East Antarctic ice sheet for at least 100 km. Although Early Jurassic extension is documented in CTM, major rift-bounding faults have not been observed. Models for magma emplacement include transport along the axis of the Transantarctic Mountains and off-axis transport from major rift-bounding faults. Contrasts in geochemistry between lavas of NVL (MgO=67%) and CTM (MgO=24%) and the presence of massive dolerite bodies (CTM, SVL) suggest discrete episodes and locations of magma emplacement, and that there was no long range interconnection along the mountain range in supracrustal rocks.  相似文献   
5.
Thick (∼800 m) basaltic successions from the eastern Antarctic Peninsula have been dated in the interval 180–177 Ma and preserve a transition from a continental margin arc to a back-arc extensional setting. Amygdaloidal basalts from the Black Coast region of the eastern margin of the Antarctic Peninsula represent a rare onshore example of magmatism associated with back-arc extension that defines the early phase of Weddell Sea rifting and magmatism, and Gondwana breakup. The early phase of extension in the Weddell Sea rift system has previously been interpreted to be related to back-arc basin development with associated magnetic anomalies attributed to mafic-intermediate magmatism, but with no clearly defined evidence of back-arc magmatism. The analysis provided here identifies the first geochemical evidence of a transition from arc-like basalts to the development of depleted back-arc basin basalts in the interval 180–177 Ma. The exposed Black Coast basaltic successions are interpreted to form a minor component of magmatism that is also defined by onshore sub-ice magnetic anomalies, as well as the extensive magnetic anomalies of the southern Weddell Sea. Back-arc magmatism is also preserved on the Falkland Plateau where intrusions postdating 180 Ma are associated with early phase rifting in the Weddell Sea rift system. Back-arc extension was probably short-lived and had ceased by the time the northern Weddell Sea magmatism was emplaced (<175 Ma) and certainly by 171 Ma, when an episode of silicic magmatism was widespread along the eastern Antarctic Peninsula. Previous attempts to correlate mafic magmatism from the eastern Antarctic Peninsula to the Ferrar large igneous province, or, as part of a bimodal association with the Chon Aike silicic province are both dismissed based on age and geochemical criteria.  相似文献   
6.
The Tasmanian dolerites, part of the Ferrar Province of Australia and Antarctica, have some trace‐element and isotopic compositions that suggest continental contamination of mantle‐derived magmas. The debate has centred on whether the contamination occurred during intrusion into the crust, or if the mantle source itself was contaminated. The behaviour of Sr and O isotopes suggests that the mantle source had a δ18O composition of +6‰ and an initial 87Sr/86Sr ratio of 0.709, which supports the latter contention. Recently published Re–Os data likewise dismiss upper crustal contamination: Re–Os isotopic compositions of magnetite‐rich mineral separates from seven Tasmanian dolerites yield an isochron that gives the same age, within uncertainties, as other dating techniques, namely 175 ± 5 Ma. Moreover, Re–Os data from a study of Antarctic Ferrar Province samples lie on the same isochron and the data together give an age of 177.3 ± 3.5 Ma. The initial 187Os/188Os of 0.125 ± 0.033 is the calculated mantle composition at the time. These results support previous models that attribute chemical features of the Ferrar magmas to re‐enrichment of a depleted mantle source region rather than processes involving assimilation of crust by basaltic magma.  相似文献   
7.
The Basement Sill is part of the Ferrar Large Igneous Provinceexposed in the McMurdo Dry Valleys, Antarctica. The sill is330 m thick in the Bull Pass area and 450 + m thick in the Daisarea, 12 km to the west, and is characterized by phenocryst-freelower and upper margins and an orthopyroxene-rich central ‘tongue’(opx 1–5 mm in size). Halogen variations in apatite froma suite of samples collected along vertical transects throughthe sill were examined to evaluate the process of crystallization-induceddegassing (i.e. second boiling) and its effects on magma chemistry.Apatite grains from any given sample are generally unzoned withrespect to Cl and F concentrations, but may vary by 20–30mol% in the halogen site between grains. Overall average Cl/Fmass ratios increase with height from the lower margin to thecenter of the sill, and then decrease to near zero towards thetop margin where the rocks are relatively oxide-rich. The Cl/Ftrend parallels those of bulk MgO and grain size. The uppermargin contains abundant mafic pegmatoids and the apatite inthese segregations has lower Cl/F ratios compared with thatin the host-rocks, although REE show no measurable difference.Numerical modeling illustrates that a cooling and crystallizingsill initially develops two separate vapor-saturated zones atthe lower and upper margins owing to the irreversible heat lossto the cooler country rock. Vapor separating from the lowerzone migrates upward into hotter silicate liquid, where it isresorbed, thus increasing the Cl/F mass ratio of the liquid.This process leads to saturation and precipitation of apatitefrom the liquid with a higher Cl/F ratio than would otherwiseoccur. Volatile enrichment can also aid compaction and graingrowth in the central part of the sill. In contrast, the relativelyFe-rich, Cl-poor nature of the upper zone rocks suggests thatthese rocks may have crystallized from more evolved, degassedsilicate liquid, possibly compacted out of the underlying crystalmush. In addition, as vapor sourced from the lower and centralparts of the sill ascends into the cooler upper zone of thesill, the vapor may be localized (along with late interstitialsilicate liquid) to form pegmatoids at temperatures at whichCl is less favored in apatite and can be leached from existingapatite by the ascending vapor, the latter causing the observeddecrease in the Cl/F mass ratio of apatite in the (evolved)pegmatoids. KEY WORDS: Ferrar Igneous Province; halogens; fluid; apatite  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号