首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地质学   2篇
  2012年   1篇
  2006年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
《International Geology Review》2012,54(14):1684-1708
Volcanic rocks that make up Faial Island, Central Azores, consist of four volcano-stratigraphic units, with ages between 730 ka and the present. Lavas range from alkali basalts to trachyandesites and belong to the alkaline-sodic series. The oldest unit is the Ribeirinha Volcanic Complex, generally characterized by low MgO contents. The Cedros Volcanic Complex is composed of basalts to benmoreites with low MgO contents. The Almoxarife Formation represents fissure flows, containing MgO contents similar to to slightly higher than those of the underlying Cedros Volcanic Complex. The youngest unit, the Capelo Formation, consists of mafic rocks with MgO values higher than those of the other units. Bulk-rock major and trace element trends suggest that differentiation of the three earliest units were dominated by fractional crystallization of plagioclase ± clinopyroxene ± olivine ± titanomagnetite. Capelo bulk-rock compositions are the most primitive, and are related to a period when volcanic activity was fed by deep magmatic chambers, and melts ascended more rapidly. Comparison among geochemical patterns of the trace elements suggests a strong similarity between the lavas from Faial and Pico islands. Corvo Island volcanism contrasts with the geochemistry of Faial and Pico lavas, reflecting its strong K and Rb depletion, and Th, U, Ta, Nb, La, and Ce enrichment. Absence of the Daly gap in the Faial volcanics is attributed to early crystallization of Ti-Fe oxides. The probable source of the Faial magma coincides with the MORB-FOZO array, which implies the presence of ancient recycled oceanic crust in the mantle source. Ratios of incompatible trace elements suggest the similarity of Corvo volcanic rocks with magmas derived from HIMU sources, whereas the Faial and Pico volcanic rocks could have been produced from sources very close to EMII-type OIB.  相似文献   
2.
The Sr, Nd and Pb isotopic compositions for the Kovdor phoscorite–carbonatite complex (PCC), Kola Peninsula, NW Russia, have been determined to characterize the mantle sources involved and to evaluate the relative contributions of a plume and subcontinental lithospheric mantle in the formation of the complex. The Kovdor PCC is a part of the Kovdor ultramafic–alkaline–carbonatite massif, and consists of six intrusions. The initial isotopic ratios of the analyzed samples, calculated at 380 Ma, display limited variations: εNd, + 2.0 to + 4.7; 87Sr/86Sr, 0.70319 to 0.70361 (εSr, − 12.2 to − 6.2); 206Pb/204Pb, 18.38 to 18.74; 207Pb/204Pb, 15.45 to 15.50; 208Pb/204Pb, 37.98 to 39.28. The Nd and Sr isotope data of the Kovdor PCC generally fit the patterns of the other phoscorites and carbonatites from the Kola Alkaline Province (KAP), but some data are slightly shifted from the mixing line defined as the Kola Carbonatite Line, having more radiogenic 87Sr/86Sr ratios. However, the less radiogenic Nd isotopic compositions and negative Δ7/4 values of Pb isotopes of the analyzed samples exclude crustal contamination, but imply the involvement of a metasomatized lithospheric mantle source. Isotopic variations indicate mixing of at least three distinct mantle components: FOZO-like primitive plume component, EMI-like enriched component and DMM-like depleted component. The isotopic nature of the EMI- and DMM-like mantle component observed in the Kovdor samples is considered to be inherited from metasomatized subcontinental lithospheric mantle. This supports the previous models invoking plume–lithosphere interaction to explain the origin of the Devonian alkaline carbonatite magmatism in the KAP.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号