首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11809篇
  免费   2671篇
  国内免费   3190篇
测绘学   182篇
大气科学   697篇
地球物理   4226篇
地质学   9670篇
海洋学   1101篇
天文学   23篇
综合类   545篇
自然地理   1226篇
  2024年   66篇
  2023年   168篇
  2022年   358篇
  2021年   474篇
  2020年   520篇
  2019年   585篇
  2018年   500篇
  2017年   563篇
  2016年   587篇
  2015年   595篇
  2014年   748篇
  2013年   829篇
  2012年   822篇
  2011年   873篇
  2010年   748篇
  2009年   847篇
  2008年   845篇
  2007年   872篇
  2006年   874篇
  2005年   699篇
  2004年   695篇
  2003年   596篇
  2002年   564篇
  2001年   478篇
  2000年   519篇
  1999年   421篇
  1998年   334篇
  1997年   339篇
  1996年   273篇
  1995年   219篇
  1994年   166篇
  1993年   129篇
  1992年   100篇
  1991年   64篇
  1990年   54篇
  1989年   42篇
  1988年   36篇
  1987年   22篇
  1986年   14篇
  1985年   8篇
  1984年   3篇
  1983年   5篇
  1982年   4篇
  1981年   1篇
  1980年   1篇
  1979年   3篇
  1978年   3篇
  1977年   1篇
  1976年   1篇
  1954年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The groundwater divide is a key feature of river basins and significantly influenced by subsurface hydrological processes. For an unconfined aquifer between two parallel rivers or ditches, it has long been defined as the top of the water table based on the Dupuit–Forchheimer approximation. However, the exact groundwater divide is subject to the interface between two local flow systems transporting groundwater to rivers from the infiltration recharge. This study contributes a new analytical model for two-dimensional groundwater flow between rivers of different water levels. The flownet is delineated in the model to identify groundwater flow systems and the exact groundwater divide. Formulas with two dimensionless parameters are derived to determine the distributed hydraulic head, the top of the water table and the groundwater divide. The locations of the groundwater divide and the top of the water table are not the same. The distance between them in horizontal can reach up to 8.9% of the distance between rivers. Numerical verifications indicate that simplifications in the analytical model do not significantly cause misestimates in the location of the groundwater divide. In contrast, the Dupuit–Forchheimer approximation yields an incorrect water table shape. The new analytical model is applied to investigate groundwater divides in the Loess Plateau, China, with a Monte Carlo simulation process taking into account the uncertainties in the parameters.  相似文献   
2.
Glaciers and snow cover are important constituents of the surface of the Tibetan Plateau. The responses of these phenomena to global environmental changes are sensitive, rapid and intensive due to the high altitudes and arid cold climate of the Tibetan Plateau. Based on multisource remote sensing data, including Landsat images, MOD10A2 snow product, ICESat, Cryosat-2 altimetry data and long-term ground climate observations, we analysed the dynamic changes of glaciers, snow melting and lake in the Paiku Co basin using extraction methods for glaciers and lake, the degree-day model and the ice and lake volume method. The interaction among the climate, ice-snow and the hydrological elements in Paiku Co is revealed. From 2000 to 2018, the basin tended to be drier, and rainfall decreased at a rate of −3.07 mm/a. The seasonal temperature difference in the basin increased, the maximum temperature increased at a rate of 0.02°C/a and the minimum temperature decreased at a rate of −0.06°C/a, which accelerated the melting from glaciers and snow at rates of 0.55 × 107 m3/a and 0.29 × 107 m3/a, respectively. The rate of contribution to the lake from rainfall, snow and glacier melted water was 55.6, 27.7 and 16.7%, respectively. In the past 18 years, the warmer and drier climate has caused the lake to shrink. The water level of the lake continued to decline at a rate of −0.02 m/a, and the lake water volume decreased by 4.85 × 108 m3 at a rate of −0.27 × 108 m3/a from 2000 to 2018. This evaluation is important for understanding how the snow and ice melting in the central Himalayas affect the regional water cycle.  相似文献   
3.
利用内蒙古西部12个台站的地脉动噪声数据,采用噪声谱比法研究台站的场地响应情况。分析表明,台站场地响应按曲线形态可分为3类,且可能受地形地貌、局部构造和台基状况等条件影响。对比分析噪声谱比法与Moya方法的场地响应结果发现,场地响应曲线形态基本一致,只有极少数台站存在明显差异。结果表明,内蒙古西部区域大部分台站的台基状况总体较好,场地响应曲线较为平坦,无明显频率放大点。  相似文献   
4.
莱州湾南岸潍河下游地区咸水入侵灾害成因及特征   总被引:8,自引:1,他引:7  
通过对莱州湾南岸咸水入侵较严重地潍河下游地区晚更新世以来沉积特征及现代自然环境条件变化的分析,探讨了沉积相对咸水入侵产生及空间范围特征的环境机理。晚更新世以来的三次海平面升降变化造成了潍河下游地区海陆沉积环境交替,形成了巨厚的海陆交互相沉积层。海进时期,大面积的滨海平原被淹没,在近海平原洼地滞留的海水经过蒸发、浓缩变为卤水,成为咸水入侵的物源;海退后陆源碎屑在滨海地区沉积形成了巨厚的古河道砂层。20世纪70年代末期以来,随着对地下淡水的过度开采,淡咸水水头压力差减小.卤水通过古河道砂层快速南侵。通过对潍河下游地区100余个地质钻孔水化学连续监测资料分析,阐明了咸水入侵的特征,有针对性地提出了咸水入侵的防治措施。  相似文献   
5.
从太湖流域旱涝史料看历史气候信息处理   总被引:15,自引:1,他引:14  
历史气候信息处理建立在信息提取的基础上,目的在于建立一套方法,将定性的历史气候信息转化为气候变化参数,并消除各种不均—性,从而建立历史气候序列。本文着重介绍建立太湖流域历史旱涝等级序列的方法与步骤: 1)确立信息源,建立信息网络;2)站点等级的确定与订正;3)弱信息处理;4)信息的综合。  相似文献   
6.
利用钻孔测井资料并运用地层倾角测量信息分析法,给出了江汉盆地地应力最大水平主压应力方向为NE60~65°  相似文献   
7.
北部湾北部海上油田的开发工作始于50年代,60~70年代作了大量地质工作。改革开放后,油气勘查取得突破性进展。累计发现油气构造6个,含油面积超过40km2,石油地质储量约4亿t,已开发油田2个,揭开我国南方油气资源开发序幕  相似文献   
8.
The response of an ideal elastic half‐space to a line‐concentrated impulsive vector shear force applied momentarily is obtained by an analytical–numerical computational method based on the theory of characteristics in conjunction with kinematical relations derived across surfaces of strong discontinuities. The shear force is concentrated along an infinite line, drawn on the surface of the half‐space, while being normal to that line as well as to the axis of symmetry of the half‐space. An exact loading model is introduced and built into the computational method for this shear force. With this model, a compatibility exists among the prescribed applied force, the geometric decay of the shear stress component at the precursor shear wave, and the boundary conditions of the half‐space; in this sense, the source configuration is exact. For the transient boundary‐value problem described above, a wave characteristics formulation is presented, where its differential equations are extended to allow for strong discontinuities which occur in the material motion of the half‐space. A numerical integration of these extended differential equations is then carried out in a three‐dimensional spatiotemporal wavegrid formed by the Cartesian bicharacteristic curves of the wave characteristics formulation. This work is devoted to the construction of the computational method and to the concepts involved therein, whereas the interpretation of the resultant transient deformation of the half‐space is presented in a subsequent paper. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
9.
Virtual Huanghe River System: Framework and Technology   总被引:2,自引:0,他引:2  
1 Introduction Huanghe (Yellow) River basin is located in 32°–42°N, 96°–119°E. The area of the catchment is more than 752,000km2. The river is 5464km long with a drop in elevation of 4830m. Among the whole area, the moun- tainous and stone area accounts for 29%, loess and hills area 46%, sandy area 11% and plain area 14%, respec- tively. Different natural landscapes exist in this area. The Huanghe River flows through the Loess Plateau, where the soil is eroded seriously (Wang, 2002;…  相似文献   
10.
A method of structural damage identification using harmonic excitation force is presented. It considers the effects of both measurement and modelling errors in the baseline finite element model. Damage that accompanies changes in structural parameters can be estimated for a damaged structure from the change between measured vibration responses and ones calculated from the analytical model of the intact structure. In practice, modelling errors exist in the analytical model due to material and geometric uncertainties and a reduction in the degrees of freedom as well as measurement errors, making identification difficult. To surmount these problems, bootstrap hypothesis testing, which enables statistical judgment without information about these errors, was introduced. The method was validated by numerical simulation using a three‐dimensional frame structure and real vibration data for a three‐storey steel frame structure. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号